COMPLEMENTARY CHEMISTRY COURSES SEMESTER - I 15U1CPCHE1: GENERAL CHEMISTRY (Common to Physical sciences and Life sciences)

Concept of Equilibrium

Maria Linsha P.L Department of Chemistry Sacred Heart College

Properties of Acids and Bases

What are the properties of acids and bases?

Acids

Acids taste sour, will change the color of an acidbase indicator, and can be strong or weak electrolytes in aqueous solution.

Bases

Bases taste bitter, feel slippery, will change the color of an acid-base indicator, and can be strong or weak electrolytes in aqueous solution.

Arrhenius Acids and Bases

How did Arrhenius define an acid and a base?

 Arrhenius said that acids are hydrogen-containing compounds that ionize to yield hydrogen ions (H⁺) in aqueous solution. He also said that bases are compounds that ionize to yield hydroxide ions (OH⁻) in aqueous solution.

Hydrochloric Acid

- Arrhenius Bases
 - Hydroxide ions are one of the products of the dissolution of an alkali metal in water.

$$\begin{array}{ccc} 2\mathrm{Na}(s) + 2\mathrm{H_2O}(l) & \longrightarrow 2\mathrm{NaOH}(aq) + \mathrm{H_2}(g) \\ & & & & \\ \mathrm{Sodium} & & & & \\ \mathrm{Mater} & & & & \\ & & & & \\ \mathrm{Mater} & & & & \\ & & & & \\ & & & & \\ \mathrm{Mater} & & & \\ & & & & \\ & & & & \\ \mathrm{Mater} & & & \\ & & & & \\ \mathrm{Mater} & & & \\ & & & & \\ \mathrm{Mater} & & & \\ & & & & \\ \mathrm{Mater} & & & \\ & & & \\ \mathrm{Mater} & & & \\ & & & \\ \mathrm{Mater} & & & \\ & & & \\ \mathrm{Mater} & & & \\ & & & \\ \mathrm{Mater} & & \\ \mathrm{Mater} & & \\ \mathrm{Mater} & & & \\ \mathrm{Mater} & & \\ \mathrm{Mater} & & & \\ \mathrm{Mate$$

$$\begin{array}{ccc} \text{NaOH}(s) \xrightarrow{\text{H}_2\text{O}} \text{Na}^+(aq) + \text{OH}^-(aq) \\ \text{Sodium} & \text{Sodium} & \text{Hydroxide} \\ \text{hydroxide} & \text{ion} & \text{ion} \end{array}$$

Brønsted-Lowry Acids and Bases

What distinguishes an acid from a base in the Brønsted-Lowry theory?

• The Brønsted-Lowry theory defines an acid as a hydrogenion donor, and a base as a hydrogen-ion acceptor.

Conjugate Acids and Bases

- A **conjugate acid** is the particle formed when a base gains a hydrogen ion.
- A **conjugate base** is the particle that remains when an acid has donated a hydrogen ion.

 $\begin{aligned} \mathrm{NH}_{3}(aq) + \mathrm{H}_{2}\mathrm{O}(l) & \Longrightarrow \mathrm{NH}_{4}^{+}(aq) + \mathrm{OH}^{-}(aq) \\ & \text{Base} & \text{Acid} & \text{Conjugate} & \text{Conjugate} \\ & \text{acid} & \text{base} \end{aligned}$ $\begin{aligned} & \mathrm{HCl}(g) + \mathrm{H}_{2}\mathrm{O}(l) & \longleftrightarrow & \mathrm{H}_{3}\mathrm{O}^{+}(aq) + \mathrm{Cl}^{-}(aq) \\ & \text{Acid} & \text{Base} & \text{Conjugate} & \text{Conjugate} \\ & & \text{acid} & \text{base} \end{aligned}$

• A **conjugate acid-base pair** consists of two substances related by the loss or gain of a single hydrogen ion.

$$NH_{3}(aq) + H_{2}O(l) \Longrightarrow NH_{4}^{+}(aq) + OH^{-}(aq)$$

Base Acid Conjugate Conjugate base

• A substance that can act as both an acid and a base is said to be **amphoteric.**

Lewis Acids and Bases

How did Lewis define an acid and a base?

 Lewis proposed that an acid accepts a pair of electrons during a reaction, while a base donates a pair of electrons

- A **Lewis acid** is a substance that can accept a pair of electrons to form a covalent bond.
- A **Lewis base** is a substance that can donate a pair of electrons to form a covalent bond.

	Acid-Base definitions	
Туре	Acid	Base
Arrhenius	H+ producer	OH- producer
Brownsted-lowry	H+ donor	H+ acceptor
Lewis	Electron pair acceptor	Electron pair donor

Strong and weak acids and bases

- Strong acid fully dissociates in water, i.e. almost every molecule breaks up to form H⁺ ions
- Some strong acids are...HCI, H₂SO₄, HNO₃
- Weak acid partially dissociates in water
- Some weak acids are...carboxylic acids such as CH_3COOH, C_2H_5COOH
- Strong base fully dissociates in water, i.e. almost every molecule breaks up to form OH⁻ ions
- Some strong bases are....NaOH, compounds which contain OHions or O²⁻ ions
- Weak base partially dissociates in water
- Some weak bases...nitrogen-containing compounds, such as NH₃
- Strengths can be determined by the acid or base dissociation

Acids

- Act as proton donors
- Electron pair acceptors
- Strong acids dissociate fully in water.
- Weak acids partially dissociate.
- K_a: acid dissociation constant

```
HA + H<sub>2</sub>O → H<sub>3</sub>O<sup>+</sup> + A<sup>-</sup>
K<sub>a</sub> = [H_3O^+][A^-]
[HA]
```

• Higher K_a values mean stronger acids

Bases

- Act as proton acceptors
- Electron pair donors
- Strong bases dissociate fully in water
- Weak bases partially dissociate
- K_b: base dissociation constant

pH and pOH

- $[H_3O^+]$ can vary greatly \Rightarrow logarithmic scale used
- $pH = -log [H_3O^+]$
- pOH = -log [OH⁻]
- pH > 7 basic
- pH = 7 neutral
- pH < 7 acidic
- Can also express dissociation constants in terms of logs: $pK_a = -log K_a$
- .:. the higher the K_a the lower the pK_a
- Similarly for bases

Ionic product of water

 $2H_2O \rightarrow H_3O^+ + OH^-$

 K_w is the ion-product constant. K_w is the product of the molar concentrations of H_3O^+ and OH^- ions at a particular temperature

 $K_{w} = [\underline{H_{3}O^{+}}][OH^{-}] \qquad [H_{2}O] \text{ is constant}$ $[H_{2}O]^{2}$

$$\begin{split} \mathsf{K}_{\mathsf{w}} &= [\mathsf{H}_3\mathsf{O}^+][\mathsf{O}\mathsf{H}^-] = 1.0 \times 10^{-14} \ at \ 25^\circ\mathsf{C} \\ & [\mathsf{H}_3\mathsf{O}^+] = [\mathsf{O}\mathsf{H}^-] \quad \text{Solution is neutral} \\ & [\mathsf{H}_3\mathsf{O}^+] > [\mathsf{O}\mathsf{H}^-] \quad \text{Solution is acidic} \\ & [\mathsf{H}_3\mathsf{O}^+] < [\mathsf{O}\mathsf{H}^-] \quad \text{Solution is basic} \end{split}$$

• Can incorporate pH and pOH

 $K_{w} = [H_{3}O^{+}][OH^{-}]$

 $-\log K_{w} = -\log [H_{3}O^{+}][OH^{-}]$

 $pK_w = pH + pOH = 14$ (at 25°C)

Buffers

- Allow pH to be maintained over small additions of acid or base
- Made up of a weak acid and its conjugate base, e.g.

 $\begin{array}{rcrcrcrc} HA &+& H_2O \rightarrow A^- +& H_3O^+\\ acid & conjugate base \end{array}$

- The equilibrium will shift to the right on addition of a small amount to base and shifts to the left on addition of small amounts of acid
- Henderson-Hasselbalch equation allows determination of pH in buffer systems:

Solubility Equilibria

- Solubility Product Expression and K_{sp}
 - $-K_{\rm sp}$ is the *solubility product constant*
 - Set up like other equilibrium expression
 - General example;

$$MX_{n}(s) \rightleftharpoons M^{n+}(aq) + nX^{-}(aq)$$
$$K_{sp} = [M^{n+}][X^{-}]^{n}$$

Solids and liquids are not included in equilibrium expressions

The Common Ion Effect

- When a compound containing an ion **in common** with an already dissolved substance is added to a solution at equilibrium, the equilibrium shifts to the left.
- This phenomenon is known as the *common ion effect*.
- Produced by the addition of a second solute.