CDMPLEMENTARY CHEMISTRY COURSES SEMESTER - I 15UILPCHEI: GENERAL CHEMISTRY (Cammon to Physical sciences and Life sciences)

Concept of Equilibrium

Maria Linsha P.L
Department of Chemistry
Sacred Heart College

Properties of Acids and Bases

What are the properties of acids and bases?

Acids

Acids taste sour, will change the color of an acidbase indicator, and can be strong or weak electrolytes in aqueous solution.

Bases taste bitter, feel slippery, will change the color of an acid-base indicator, and can be strong or weak electrolytes in aqueous solution.

Arrhenius Acids and Bases

How did Arrhenius define an acid and a base?

- Arrhenius said that acids are hydrogen-containing compounds that ionize to yield hydrogen ions $\left(\mathrm{H}^{+}\right)$in aqueous solution. He also said that bases are compounds that ionize to yield hydroxide ions $\left(\mathrm{OH}^{-}\right)$in aqueous solution.

Hydrochloric Acid

Hydrogen
chloride

Hydrogen
ion
(hydrochloric acid)
ind
ind

Hydrogen chloride

- Arrhenius Bases
- Hydroxide ions are one of the products of the dissolution of an alkali metal in water.

Brønsted-Lowry Acids and Bases

What distinguishes an acid from a base in the Brønsted-Lowry theory?

- The Brønsted-Lowry theory defines an acid as a hydrogenion donor, and a base as a hydrogen-ion acceptor.

Conjugate Acids and Bases

- A conjugate acid is the particle formed when a base gains a hydrogen ion.
- A conjugate base is the particle that remains when an acid has donated a hydrogen ion.

- A conjugate acid-base pair consists of two substances related by the loss or gain of a single hydrogen ion.

- A substance that can act as both an acid and a base is said to be amphoteric.

Lewis Acids and Bases

How did Lewis define an acid and a base?

- Lewis proposed that an acid accepts a pair of electrons during a reaction, while a base donates a pair of electrons
- A Lewis acid is a substance that can accept a pair of electrons to form a covalent bond.
- A Lewis base is a substance that can donate a pair of electrons to form a covalent bond.

$$
\mathrm{H}^{+}+\underset{\substack{- \\
\text { Lewis } \\
\text { acid }}}{\begin{array}{c}
\text { Lewis } \\
\text { base }
\end{array}}
$$

Acid-Base definitions		
Type	Acid	Base
Arrhenius	H+ producer	OH-producer
Brownsted-lowry	H+ donor	H+ acceptor
Lewis	Electron pair acceptor	Electron pair donor

Strong and weak acids and bases

- Strong acid - fully dissociates in water, i.e. almost every molecule breaks up to form H^{+}ions
- Some strong acids are $\ldots \mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}$
- Weak acid - partially dissociates in water
- Some weak acids are...carboxylic acids such as $\mathrm{CH}_{3} \mathrm{COOH}$, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$
- Strong base - fully dissociates in water, i.e. almost every molecule breaks up to form OH^{-}ions
- Some strong bases are.... NaOH , compounds which contain OH^{-} ions or O^{2-} ions
- Weak base - partially dissociates in water
- Some weak bases...nitrogen-containing compounds, such as NH_{3}
- Strenaths can he determined hy the acid or hase dissociation

Acids

- Act as proton donors
- Electron pair acceptors
- Strong acids dissociate fully in water.
- Weak acids partially dissociate.
- K_{a} : acid dissociation constant

$$
\begin{gathered}
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{gathered}
$$

- Higher K_{a} values mean stronger acids

Bases

- Act as proton acceptors
- Electron pair donors
- Strong bases dissociate fully in water
- Weak bases partially dissociate
- K_{b} : base dissociation constant

pH and pOH

- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$can vary greatly \Rightarrow logarithmic scale used
- $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
- $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
- $\mathrm{pH}>7$ basic
- $\mathrm{pH}=7$ neutral
- $\mathrm{pH}<7$ acidic
- Can also express dissociation constants in terms of logs:

$$
\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}
$$

- \therefore the higher the K_{a} the lower the pK_{a}
- Similarly for bases

Ionic product of water

$$
2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}
$$

K_{w} is the ion-product constant. K_{w} is the product of the molar concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions at a particular temperature

$$
\begin{gathered}
\mathrm{K}_{\mathrm{w}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}^{2}\right.} \quad\left[\mathrm{H}_{2} \mathrm{O}\right] \text { is constant } \\
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \text { at } 25^{\circ} \mathrm{C} \\
\\
\\
\\
\left.\mathrm{pK}_{\mathrm{w}}=-\log \mathrm{H}_{3} \mathrm{O}_{\mathrm{w}}\right]=\left[\mathrm{OH}^{-}\right] \\
\\
\\
\\
\\
\left.\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right] \text {Solution is neutral } \\
\\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right] \text {Solution is acidic basic }}
\end{gathered}
$$

- Can incorporate pH and pOH

$$
\begin{gathered}
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad-\log \mathrm{K}_{\mathrm{w}}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
\mathrm{pK}_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14\left(\text { at } 25^{\circ} \mathrm{C}\right)
\end{gathered}
$$

Buffers

- Allow pH to be maintained over small additions of acid or base
- Made up of a weak acid and its conjugate base, e.g.

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{~A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

acid conjugate base

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\left\lfloor\mathrm{A}^{-} \| \mathrm{H}_{3} \mathrm{O}^{+}\right]}{\mathrm{HA}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{\mathrm{a}}\left(\left[\begin{array}{c}
{[\mathrm{HA}]} \\
{\left[\mathrm{A}^{-}\right]}
\end{array}\right)\right.} \\
& -\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\operatorname{logK} \mathrm{a}^{-}-\log \left(\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}\right) \\
& \mathrm{pH}=
\end{aligned} \mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} .
$$

- The equilibrium will shift to the right on addition of a small amount to base and shifts to the left on addition of small amounts of acid
- Henderson-Hasselbalch equation allows determination of pH in buffer systems:

Solubility Equilibria

- Solubility Product Expression and $K_{\text {sp }}$
- $K_{\text {sp }}$ is the solubility product constant
- Set up like other equilibrium expression
- General example;

$$
\begin{aligned}
\mathrm{MX}_{n}(s) & \rightleftarrows \mathrm{M}^{\mathrm{n}+}(a q)+n \mathrm{X}^{-}(a q) \\
K_{\mathrm{sp}} & =\left[\mathrm{M}^{n+}\right]\left[\mathrm{X}^{-}\right]^{n}
\end{aligned}
$$

- Solids and liquids are not included in equilibrium expressions

The Common Ion Effect

- When a compound containing an ion in common with an already dissolved substance is added to a solution at equilibrium, the equilibrium shifts to the left.
- This phenomenon is known as the common ion effect.
- Produced by the addition of a second solute.

