Correlation and Regression

Two variables are said to be correlated if change in value of one variable appears to be related or linked with the change in the value of the other variable.

Ex 1: Pressure and volume of a gas is said to be correlated as an increase in pressure brings a decrease in volume
Ex 2: An increase in bank interest may lead to an increase in deposit.
Correlation is of two types:

- Positive Correlation or Direct Correlation
- Negative Correlation or indirect Correlation

Correlation is said to be positive or direct if an increase in the value of one variable is associated with an increase in the other variable also. In this case the both the variables change or move in the same direction.

Correlation is said to be negative or indirect if an increase in the value of one variable is associated with a decrease in the other variable also. In this case the both the variables change or move in the opposite direction.

Correlation and Regression

Scatter Diagram: Let X and Y be two variables under consideration. Assume that data is collected from n units of the population regarding these two variables. Let $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \ldots \ldots . .\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ be the n pairs of observations. The diagram obtained by plotting the observations in a two dimensional plane (usually taking the variable X on the horizontal axis and Y on the vertical axis) is called the scatter diagram.

Uses of Scatter Diagram: The points in the scatter diagram can show the simultaneous variations in the values of the variables. The term scatter refers to the dispersion of dots on the graph. If the points in the scatter diagram are very dense, it indicates high degree of correlation, a widely scattered diagram indicate poor correlation. Scatter diagram can be used to identify

- whether there exist any relationship between the variables.
- whether an existing relationship is positive or negative.
- Whether the existing relationship (+ve or -ve) is perfect or strong or weak.
- identify whether the relationship is linear or non linear.

Correlation and Regression

The following shows scatter diagram corresponding to different types of linear relationship between two variables.

Scatter Diagram

High Degree of

Correlation and Regression

Curve fitting: The scatter diagram presents an approximate relationship between the variables under consideration in a nonmathematical way. The exact functional relationship between the variables can be obtained by establishing a mathematical functional relationship between the variables using the given data. Let $\mathrm{y}=\mathrm{f}\left(a_{0}, a_{1}, a_{2}, \ldots \ldots \ldots ., a_{n}, \mathrm{x}\right)$ be the functional relationship between the dependent variable Y and independent variable X. Let $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \ldots \ldots . .\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ be the n pairs of observations. By curve fitting we mean the determination of the best values of $a_{0}, a_{1}, a_{2}, \ldots \ldots \ldots ., a_{n}$ using the given set of observations.
In practice it is difficult to have an ideal situation that all the points falls on the curve. Hence best values of the $a_{0}, a_{1}, a_{2}, \ldots \ldots \ldots, a_{n}$ are those values for which maximum points in the scatter diagram lie on the curve.

Correlation and Regression

Principle of least squares:

Let $\mathrm{y}=\mathrm{f}\left(a_{0}, a_{1}, a_{2}, \ldots \ldots . . ., a_{n}, \mathrm{x}\right)$ be the functional relationship between the dependent variable Y and independent variable X. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots \ldots .\left(x_{n}, y_{n}\right)$ be the n pairs of observations. By curve fitting we mean the determination of the best values of $a_{0}, a_{1}, a_{2}, \ldots \ldots \ldots . ., a_{n} u$ sing the given set of observations.

When the value of the independent variable $\mathrm{X}=x_{\mathrm{i}}$, the observed value of Y is y_{i} and the corresponding value of Y estimated from the functional relationship is given by, $\widehat{y_{\mathrm{i}}}=\mathrm{f}\left(a_{0}, a_{1}, a_{2}, \ldots \ldots . . ., a_{n}, x_{\mathrm{i}}\right)$.
The difference between y_{i} and $\widehat{y_{\mathrm{i}}}$ is termed as the error e_{i} at the point $\left(x_{i}, y_{i}\right)$ and is given by $e_{\mathrm{i}}=y_{\mathrm{i}}-\widehat{y_{\mathrm{i}}}=\left\{y_{\mathrm{i}}-\mathrm{f}\left(a_{0}, a_{1}, a_{2}, \ldots \ldots . . ., a_{n}, x_{\mathrm{i}}\right)\right\}$.

The Principle of least squares states that the best values of the parameters or constants $a_{0}, a_{1}, a_{2}, \ldots \ldots . . ., a_{n}$ are those values which minimise the sum of squares of errors.
By this Principle the best values of $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are those values which minimize the sum $\mathrm{S}=\sum e_{i}{ }^{2}=\sum\left\{y_{\mathrm{i}}-\mathrm{f}\left(a_{0}, a_{1}, a_{2}, \ldots \ldots \ldots, a_{n}, x_{\mathrm{i}}\right)\right\}^{2}$

Correlation and Regression

 the dependent variable Y and independent variable X. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots \ldots\left(x_{n}, y_{n}\right)$ be the n pairs of observations.When the value of the independent variable $\mathrm{X}=x_{\mathrm{i}}$, the observed value of Y is y_{i} and the corresponding value of Y estimated from the functional relationship is given by, $\widehat{y_{\mathrm{i}}}=\mathrm{f}\left(a_{0}, a_{1}, a_{2}, \ldots \ldots . . ., a_{n}, x_{\mathrm{i}}\right)$.

The difference between y_{i} and $\widehat{y_{\mathrm{i}}} \widehat{i s}$ termed as the error e_{i} at the point $\left(x_{i}, y_{i}\right)$ and is given by $e_{\mathrm{i}}=y_{\mathrm{i}}-\widehat{y_{\mathrm{i}}}=\left\{y_{\mathrm{i}}-\mathrm{f}\left(a_{0}, a_{1}, a_{2}, \ldots \ldots . . ., a_{n}, x_{\mathrm{i}}\right)\right\}$.

The Principle of least squares states that the best values of the parameters or constants $a_{0}, a_{1}, a_{2}, \ldots \ldots, a_{n}$ are those values which minimise the sum of squares of errors.
By this Principle the best values of $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are those values which minimize the sum $\mathrm{S}=\sum e_{i}^{2}=\sum\left\{y_{\mathrm{i}}-\mathrm{f}\left(a_{0}, a_{1}, a_{2}, \ldots \ldots \ldots ., a_{n}, x_{\mathrm{i}}\right)\right\}^{2}$
S is a minimum when $\frac{\partial S}{\partial a_{0}}=0, \frac{\partial S}{\partial a_{1}}=0, \frac{\partial S}{\partial a_{2}}=0, \ldots \ldots \cdot \frac{\partial S}{\partial a_{n}}=0$

Correlation and Regression

$$
\begin{aligned}
& \text { We have } \mathrm{S}=\sum e_{i}^{2}=\sum\left\{y_{\mathrm{i}}-\mathrm{f}\left(a_{0}, a_{1}, a_{2}, \ldots \ldots \ldots, a_{n}, x_{\mathrm{i}}\right)\right\}^{2} \\
& \frac{\partial S}{\partial a_{0}}=0 \Longrightarrow \frac{\partial}{\partial a_{0}} \sum\left\{y_{\mathrm{i}}-\mathrm{f}\left(a_{0}, a_{1}, a_{2}, \ldots \ldots \ldots, a_{n}, x_{\mathrm{i}}\right)\right\}^{2}=0 \\
& \frac{\partial S}{\partial a_{1}}=0 \Longleftrightarrow \frac{\partial}{\partial a_{1}} \sum\left\{y_{\mathrm{i}}-\mathrm{f}\left(a_{0}, a_{1}, a_{2}, \ldots \ldots \ldots, a_{n}, x_{\mathrm{i}}\right)\right\}^{2}=0 \\
& \frac{\partial S}{\partial a_{2}}=0 \Longleftrightarrow \frac{\partial}{\partial a_{2}} \sum\left\{y_{\mathrm{i}}-\mathrm{f}\left(a_{0}, a_{1}, a_{2}, \ldots \ldots \ldots ., a_{n}, x_{\mathrm{i}}\right)\right\}^{2}=0 \\
& \ldots \\
& \frac{\partial S}{\partial a_{n}}=0 \Longrightarrow \frac{\partial}{\partial a_{3}} \sum\left\{y_{\mathrm{i}}-\mathrm{f}\left(a_{0}, a_{1}, a_{2}, \ldots \ldots \ldots ., a_{n}, x_{\mathrm{i}}\right)\right\}^{2}=0
\end{aligned}
$$

The above set of $(n+1)$ equations are called the normal equations. Solving the normal equations, we get the best values of $a_{0}, a_{1}, a_{2}, \ldots \ldots \ldots, a_{n}$.

Correlation and Regression

To fit a straight line of the form $y=a x+b$ to a given data set. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots \ldots\left(x_{n}, y_{n}\right)$ be the n pairs of observations. By curve fitting we mean the determination of the best values of a and b using the given set of observations.

When the value of the independent variable $\mathrm{X}=x_{\mathrm{i}}$, the observed value of Y is y_{i} and the corresponding value of Y estimated from the functional relationship is given by, $\widehat{y_{\mathrm{i}}}=\mathrm{a} x_{\mathrm{i}}+\mathrm{b}$
The difference between y_{i} and $\widehat{y_{\mathrm{i}}}$ is termed as the error e_{i} at the point $\left(x_{i}, y_{i}\right)$ and is given by $e_{\mathrm{i}}=y_{\mathrm{i}}-\widehat{y_{\mathrm{i}}}=\left\{y_{\mathrm{i}}-\left(a x_{\mathrm{i}}+b\right)\right\}$.
By the Least Squares Principle, best values of a and b are those values which minimize the sum of squares of errors given by,
$\mathrm{S}=\sum e_{i}^{2}=\sum\left\{y_{\mathrm{i}}-\left(a x_{\mathrm{i}}+b\right)\right\}^{2}$

Correlation and Regression

To fit $y=a x+b$

-------------Contd from previous slide
$\mathrm{S}=\sum e_{i}^{2}=\sum\left\{y_{\mathrm{i}}-\left(a x_{\mathrm{i}}+b\right)\right\}^{2}$
S is a minimum when $\frac{\partial S}{\partial a}=0$ and $\frac{\partial S}{\partial b}=0$
$\frac{\partial S}{\partial a}=0 \Longrightarrow 2 \sum\left\{y_{\mathrm{i}}-\left(a x_{\mathrm{i}}+b\right)\right\}^{2-1}\left(0-x_{\mathrm{i}}-0\right)=0$
$-2 \sum\left(y_{\mathrm{i}}-a x_{\mathrm{i}}-b\right) x_{\mathrm{i}}=0 \quad \Longrightarrow \sum x_{\mathrm{i}} y_{\mathrm{i}}=\mathrm{a} \sum x_{\mathrm{i}}^{2}+\mathrm{b} x_{\mathrm{i}}$.
$\frac{\partial S}{\partial b}=0 \Longrightarrow 2 \sum\left\{y_{\mathrm{i}}-\left(a x_{\mathrm{i}}+b\right)\right\}^{2-1}(0-0-1)=0$
$-2 \sum\left(y_{\mathrm{i}}-a x_{\mathrm{i}}-b\right)=0$
$\Longrightarrow \sum y_{\mathrm{i}}=\mathrm{a} \sum x_{\mathrm{i}}+\mathrm{nb}$.
The normal equations are given by,

$$
\begin{align*}
\sum y_{\mathrm{i}} & =\mathrm{a} \sum x_{\mathrm{i}}+\mathrm{nb} \ldots \ldots \text { (2) } \\
\sum x_{\mathrm{i}} y_{\mathrm{i}} & =\mathrm{a} \sum x_{\mathrm{i}}^{2}+\mathrm{b} x_{\mathrm{i}} \ldots \tag{1}
\end{align*}
$$

x_{i}	y_{i}	$x_{\mathrm{i}} y_{\mathrm{i}}$	x_{i}^{2}
x_{1}	y_{1}	$x_{1} y_{1}$	x_{1}^{2}
x_{2}	y_{2}	$x_{2} y_{2}$	x_{2}^{2}
$\ldots \ldots$	$\ldots \ldots$.	$\ldots \ldots \ldots$.	$\ldots \ldots$
x_{n}	y_{n}	$x_{n} y_{n}$	x_{n}^{2}
Σx_{i}	Σy_{i}	$\Sigma x_{\mathrm{i}} y_{\mathrm{i}}$	$\Sigma x_{\mathrm{i}}^{2}$

Correlation and Regression

Curve fitting
Qn 1: Fit a straight line to the data Let the straight line to be fitted be $y=a x+b$
The normal equations are given by

$$
\begin{aligned}
\sum y_{\mathrm{i}} & =\mathrm{a} \sum x_{\mathrm{i}}+\mathrm{nb} \ldots \ldots .(1) \\
\sum x_{\mathrm{i}} y_{\mathrm{i}} & =\mathrm{a} \sum x_{\mathrm{i}}{ }^{2}+\mathrm{b} x_{\mathrm{i}} \ldots
\end{aligned}
$$

Substituting from table in
(1) and (2) we get,
$16.9=5 \mathrm{a}+10 \mathrm{~b}(3)$
$47.1=10 \mathrm{a}+30 \mathrm{~b}(4)$

X	0	1	2	3	4
y	1	1.8	3.3	4.5	6.3
x	y				
0	1.00	0.00	0.0		
0	1.80	1.80	1.0		
1	3.30	6.60	4.0		
2	4.50	13.50	9.0		
3	6.30	25.20	16.0		
4	16.9	47.1	30		
10					

Solving (3) and (4) we get
$\mathrm{a}=0.72$ and $\mathrm{b}=1.33$
The fitted straight line is $y=0.72 x+1.33$

Correlation and Regression

 To fit a curve of the form $y=a x^{2}+b x+c$ to a given data set. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots \ldots\left(x_{n}, y_{n}\right)$ be the n pairs of observations. By curve fitting we mean the determination of the best values of a and b using the given set of observations.When the value of the independent variable $\mathrm{X}=x_{\mathrm{i}}$, the observed value of Y is y_{i} and the corresponding value of Y estimated from the functional relationship is given by, $\widehat{y_{\mathrm{i}}}=\mathrm{a} x_{\mathrm{i}}^{2}+\mathrm{b} x_{\mathrm{i}}+\mathrm{c}$

The difference between y_{i} and $\widehat{y_{\mathrm{i}}}$ is termed as the error e_{i} at the point $\left(x_{i}, y_{i}\right)$ and is given by $e_{\mathrm{i}}=y_{\mathrm{i}}-\widehat{y_{\mathrm{i}}}=\left\{y_{\mathrm{i}}-\left(\mathrm{a} x_{\mathrm{i}}{ }^{2}+\mathrm{b} x_{\mathrm{i}}+\mathrm{c}\right)\right\}$.

By the Least Squares Principle, best values of a and b are those values which minimize the sum of squares of errors given by,

$$
\mathrm{S}=\sum e_{i}^{2}=\sum\left\{y_{\mathrm{i}}-\left(\mathrm{a} x_{\mathrm{i}}^{2}+\mathrm{b} x_{\mathrm{i}}+\mathrm{c}\right)\right\}^{2}
$$

Correlation and Regression

To fit $y=y=a x^{2}+b x+c$
-------Contd from previous slide
$\mathrm{S}=\sum e_{i}{ }^{2}=\sum\left\{y_{\mathrm{i}}-\left(\mathrm{a} x_{\mathrm{i}}{ }^{2}+\mathrm{b} x_{\mathrm{i}}+\mathrm{c}\right)\right\}^{2}$
S is a minimum when $\frac{\partial S}{\partial a}=0, \frac{\partial S}{\partial b}=0$ and $\frac{\partial S}{\partial c}=0$

$$
\begin{align*}
& \frac{\partial S}{\partial a}=0 \longrightarrow 2 \sum\left\{y_{\mathrm{i}}-\left(\mathrm{a} x_{\mathrm{i}}^{2}+\mathrm{b} x_{\mathrm{i}}+\mathrm{c}\right)\right\}^{2-1}\left(0-x_{\mathrm{i}}^{2}-0-0\right)=0 \\
& -2 \sum\left(y_{\mathrm{i}}-\mathrm{a} x_{\mathrm{i}}^{2}-\mathrm{b} x_{\mathrm{i}}-\mathrm{c}\right) x_{\mathrm{i}}{ }^{2}=0 \quad \longrightarrow \sum x_{\mathrm{i}}^{2} y_{\mathrm{i}}=\mathrm{a} \sum x_{\mathrm{i}}^{4}+\mathrm{b} \Sigma x_{\mathrm{i}}^{3}+\mathrm{c} \Sigma x_{\mathrm{i}}{ }^{2} . \tag{1}
\end{align*}
$$

$\frac{\partial S}{\partial b}=0 \quad \longrightarrow 2 \sum\left\{y_{\mathrm{i}}-\left(\mathrm{a} x_{\mathrm{i}}^{2}+\mathrm{b} x_{\mathrm{i}}+\mathrm{c}\right)\right\}^{2-1}\left(0-0-x_{\mathrm{i}}-0\right)=0$
$-2 \sum\left(y_{\mathrm{i}}-\mathrm{a} x_{\mathrm{i}}^{2}-\mathrm{b} x_{\mathrm{i}}-\mathrm{c}\right) x_{\mathrm{i}}=0 \quad \longrightarrow \sum x_{\mathrm{i}} y_{\mathrm{i}}=\mathrm{a} \sum x_{\mathrm{i}}^{3}+\mathrm{b} \sum x_{\mathrm{i}}^{2}+\mathrm{c} \Sigma x_{\mathrm{i}}$
$\frac{\partial S}{\partial c}=0 \quad \longrightarrow 2 \sum\left\{y_{\mathrm{i}}-\left(\mathrm{a} x_{\mathrm{i}}^{2}+\mathrm{b} x_{\mathrm{i}}+\mathrm{c}\right)\right\}^{2-1}(0-0-0-1)=0$
$-2 \sum\left(y_{\mathrm{i}}-\mathrm{a} x_{\mathrm{i}}{ }^{2}-\mathrm{b} x_{\mathrm{i}}-\mathrm{c}\right)=0 \quad \longrightarrow \sum y_{\mathrm{i}}=\mathrm{a} \sum x_{\mathrm{i}}{ }^{2}+\mathrm{b} \sum x_{\mathrm{i}}+\mathrm{nc}$
The normal equations are given by,
$\sum y_{\mathrm{i}}=\mathrm{a} \sum x_{\mathrm{i}}{ }^{2}+\mathrm{b} \Sigma x_{\mathrm{i}}+\mathrm{nc} \ldots \ldots$. (3)
$\sum x_{\mathrm{i}} y_{\mathrm{i}}=\mathrm{a} \sum x_{\mathrm{i}}{ }^{3}+\mathrm{b} \sum x_{\mathrm{i}}{ }^{2}+\mathrm{c} \sum x_{\mathrm{i}} \ldots$ (2)

x_{i}	y_{i}	$x_{\mathrm{i}} y_{\mathrm{i}}$	$x_{\mathrm{i}}{ }^{2}$	$x_{\mathrm{i}}{ }^{2} y_{\mathrm{i}}$	$x_{\mathrm{i}}{ }^{3}$	$x_{\mathrm{i}}{ }^{4}$
x_{1}	y_{1}	$x_{1} y_{1}$	$x_{1}{ }^{2}$	$x_{1}{ }^{2} y_{1}$	$x_{1}{ }^{3}$	$x_{1}{ }^{4}$
x_{2}	y_{2}	$x_{2} y_{2}$	$x_{2}{ }^{2}$	$x_{2}{ }^{2} y_{2}$	$x_{2}{ }^{3}$	$x_{2}{ }^{4}$

$\sum x_{\mathrm{i}}{ }^{2} y_{\mathrm{i}}=\mathrm{a} \sum x_{\mathrm{i}}{ }^{4}+\mathrm{b} \Sigma x_{\mathrm{i}}{ }^{3}+\mathrm{c} \Sigma x_{\mathrm{i}}{ }^{2}$

Correlation and Regression

Qn 2: Fit a parabola to the data Let the parabolat o be fitted be

X	1.0	1.5	2.0	2.5	3.0	3.5	4.0
y	1.1	1.3	1.6	2.0	2.7	3.4	4.1

The normal equations are given by
$\sum y_{\mathrm{i}}=\mathrm{a} \sum x_{\mathrm{i}}^{2}+\mathrm{b} \Sigma x_{\mathrm{i}}+\mathrm{nc}$.
$\sum x_{\mathrm{i}} y_{\mathrm{i}}=\mathrm{a} \sum x_{\mathrm{i}}{ }^{3}+\mathrm{b} \Sigma x_{\mathrm{i}}{ }^{2}+\mathrm{c} \Sigma x_{\mathrm{i}} \ldots$
$\sum x_{\mathrm{i}}^{2} y_{\mathrm{i}}=\mathrm{a} \sum x_{\mathrm{i}}{ }^{4}+\mathrm{b} \Sigma x_{\mathrm{i}}{ }^{3}+\mathrm{c} \Sigma x_{\mathrm{i}}{ }^{2}$
Substituting from table in
(1), (2) and (3) and solving them
we get $\mathbf{a}=0.24$

From the given data set

$$
\begin{aligned}
& \mathrm{n}=7, \sum x=17.5, \sum y=16.2, \\
& \sum x y=47.65, \sum x^{2}=50.75 \\
& \sum x^{2} y=154.475, \sum x^{3}=161.875 \\
& \sum x^{4}=548.1875
\end{aligned}
$$

$$
\begin{aligned}
& b=-0.20 \\
& c=1.00
\end{aligned}
$$

The fitted parabola is $y=0.24 x^{2}-0.20 x+1$

Correlation and Regression

Curve fitting
Normal Equations for fitting various curves

To Fit $Y=\alpha+\beta x$
Normal Equations are
$\Sigma y=n \alpha+\beta \Sigma x$
$\Sigma x y=\alpha \Sigma x+\beta \Sigma x^{2}$

To fit $Y=a x^{2}+b x+c$
The normal equations are
$\sum y_{i}=\mathrm{a} \sum x_{\mathrm{i}}{ }^{2}+\mathrm{b} \Sigma x_{i}+\mathrm{nc}$
$\sum x_{i} y_{i}=\mathrm{a} \sum x_{i}{ }^{3}+\mathrm{b} \Sigma x_{\mathrm{i}}{ }^{2}+\mathrm{c} \Sigma x_{i}$
$\sum x_{i}^{2} y_{i}=\mathrm{a} \sum x_{i}{ }^{4}+\mathrm{b} \Sigma x_{i}{ }^{3}+\mathrm{c} \Sigma x_{\mathrm{i}}{ }^{2}$

To Fit $x=\alpha+\beta y$
Normal Equations are
$\Sigma \mathrm{x}=\mathrm{n} \alpha+\beta \Sigma \mathrm{y}$
$\Sigma x y=\alpha \Sigma y+\beta \Sigma y^{2}$

$$
\begin{aligned}
& \text { To fit } \mathrm{x}=\alpha+\beta \mathrm{y}+\gamma y^{2} \\
& \text { The normal equations are } \\
& \Sigma \mathrm{x}=\mathrm{n} \alpha+\beta \Sigma \mathrm{y}+\gamma \Sigma y^{2} \\
& \Sigma \mathrm{xy}=\alpha \Sigma \mathrm{y}+\beta \Sigma y^{2}+\gamma \Sigma y^{3} \\
& \Sigma \mathrm{x} y^{2}=\alpha \Sigma y^{2}+\beta \Sigma y^{3}+\gamma \Sigma y^{4}
\end{aligned}
$$

Correlation and Regression

To fit curves of the form (1) $y=a x^{b}$
(1) To fity $=a x^{b}$

Taking log on both sides, $\log y=\log a+b \log x \ldots(1)$
(2) $y=a b^{x}$
(3) $y=a e^{b x}$

To fit curve of the form $y=a x^{b}$,
We first apply a transformation to convert the given equation into a linear equation.
Let $Y=\log y, A=\log a$
$B=b$ and $X=\log x$
Then (1) gives $\mathrm{Y}=\mathrm{A}+\mathrm{BX} . .$. (2)
The normal equations for fitting the linear equation (2)are $\Sigma \mathrm{Y}=\mathrm{nA}+\mathrm{B} \mathrm{\Sigma X}$ (3)
$\boldsymbol{\Sigma X Y}=\mathbf{A \Sigma X}+\mathbf{B \Sigma} \boldsymbol{X}^{\mathbf{2}}$
Solving (3) and (4) we get A and B. Then $\mathrm{a}=\operatorname{Antilog}(\mathrm{A}), \mathrm{b}=\mathrm{B}$

x	Y	$\mathrm{X}=\log \mathrm{x}$	$\mathrm{Y}=\log \mathrm{y}$	XY	X^{2}
x_{1}	y_{1}	$X_{1}=\log x_{1}$	$Y_{1}=\log y_{1}$	$X_{1} Y_{1}$	$X_{1}{ }^{2}$
x_{2}	y_{2}	$X_{2}=\log x_{2}$	$Y_{2}=\log y_{2}$	$X_{2} Y_{2}$	$X_{2}{ }^{2}$
$\ldots \ldots$	$\ldots \ldots$	$\ldots \ldots \ldots \ldots$.	$\ldots \ldots \ldots \ldots$	$\ldots \ldots$.	$\ldots \ldots \ldots$
x_{n}	y_{n}	$X_{n}=\log x_{n}$	$Y_{n}=\log y_{n}$	$X_{n} Y_{n}$	$X_{n}{ }^{2}$

---- ---- $\quad \Sigma X \quad \Sigma X Y \quad \Sigma X^{2}$

Correlation and Regression

(2) To fity $=a b^{x}$

Taking log on both sides, $\log y=\log a+x \log b \ldots(1)$
Let $\mathrm{Y}=\log \mathrm{y}, \mathrm{A}=\log \mathrm{a}$
$\mathrm{B}=\log \mathrm{b}$ and $\mathrm{X}=\mathrm{x}$
Then (1) gives $Y=A+B X$
The normal equations for
fitting the linear equation (2)are $\Sigma \mathrm{Y}=\mathrm{nA}+\mathrm{B} \mathrm{\Sigma X}$
$\boldsymbol{\Sigma X Y}=\mathbf{A \Sigma X}+\mathbf{B \Sigma} \boldsymbol{X}^{\mathbf{2}}$
Solving (3) and (4) we get A and B. Then $\mathrm{a}=\operatorname{Antilog}(\mathrm{A}), \mathrm{b}=\mathrm{B}$

To fit curve of the form $\mathrm{y}=\mathrm{a} b^{x}$,
 We first apply a transformation to convert the given equation into a linear equation.

X	Y	$\mathrm{X}=\mathrm{x}$	$\mathrm{Y}=\log \mathrm{Y}$	XY	X^{2}
x_{1}	y_{1}	$X_{1}=x_{1}$	$Y_{1}=\log y_{1}$	$X_{1} Y_{1}$	$X_{1}{ }^{2}$
x_{2}	y_{2}	$X_{2}=x_{2}$	$Y_{2}=\log y_{2}$	$X_{2} Y_{2}$	$X_{2}{ }^{2}$
$\ldots \ldots$	$\ldots \ldots$	$\ldots \ldots \ldots \ldots$	$\ldots \ldots \ldots \ldots$.	$\ldots \ldots$.	$\ldots \ldots \ldots .$.
x_{n}	y_{n}	$X_{n}=x_{n}$	$Y_{n}=\log y_{n}$	$X_{n} Y_{n}$	$X_{n}{ }^{2}$
$-\cdots-$	---	$\Sigma \mathrm{X}$	$\Sigma \mathrm{Y}$	$\Sigma \mathrm{XY}$	ΣX^{2}

Correlation and Regression

Taking log on both sides,
$\log y=\log a+b x \cdot \log _{10} e$
$\log \mathrm{y}=\log \mathrm{a}+\mathrm{b} \log _{10} e \cdot \mathrm{x} . . .(1)$

To fit curve of the form $\mathrm{y}=a e^{b x}$,

 We first apply a transformation to convert the given equation into a linear equation.Let $\mathrm{Y}=\log \mathrm{y}, \mathrm{A}=\log \mathrm{a}, \mathrm{X}=\mathrm{x}$
$\mathrm{B}=\mathrm{b} . \log _{10} e=0.4343 \mathrm{~b}$
Then (1) gives $\mathrm{Y}=\mathrm{A}+\mathrm{BX}$
The normal equations for
fitting the linear equation (2)are
$\Sigma \mathrm{Y}=\mathrm{nA}+\mathrm{B} \mathrm{\Sigma X}$
$\Sigma X Y=A \Sigma X+B \Sigma X^{2}(4)$
Solving (3) and (4) we get A and B.

x	y	$\mathrm{X}=\mathrm{x}$	$\mathrm{Y}=\log \mathrm{y}$	XY	X^{2}
x_{1}	y_{1}	$X_{1}=x_{1}$	$Y_{1}=\log y_{1}$	$X_{1} Y_{1}$	$X_{1}{ }^{2}$
x_{2}	y_{2}	$X_{2}=x_{2}$	$Y_{2}=\log y_{2}$	$X_{2} Y_{2}$	$X_{2}{ }^{2}$
$\ldots \ldots$	$\ldots \ldots$	$\ldots \ldots \ldots \ldots$	$\ldots \ldots \ldots \ldots$	$\ldots \ldots$.	$\ldots \ldots \ldots .$.
x_{n}	y_{n}	$X_{n}=x_{n}$	$Y_{n}=\log y_{n}$	$X_{n} Y_{n}$	$X_{n}{ }^{2}$
---	---	$\Sigma \mathrm{X}$	$\Sigma \mathrm{Y}$	$\Sigma \mathrm{XY}$	ΣX^{2}

Then $\mathrm{a}=\operatorname{Antilog}(\mathrm{A}), \mathrm{b}=\mathrm{B} / 0.4343$

Correlation and Regression

Curve fitting
Qn 3: Fit the curve $y=a x^{b}$ for
Taking log on both sides,
$\log y=\log a+b \log x$.
Let $Y=\log y, A=\log a$
$B=b$ and $X=\log \mathrm{X}$
Then (1) gives $Y=A+B X \ldots$ (2)
The normal equations for
fitting the linear equation (2)are
$\Sigma \mathrm{Y}=\mathrm{nA}+\mathrm{B} \Sigma \mathrm{X}$
$\Sigma X Y=A \Sigma X+B \Sigma X^{2}$
Substituting from table in (3) and (4)
$4.313=6 \mathrm{~A}+2.857 \mathrm{~B}$ \qquad
$2.267=2.857 \mathrm{~A}+1.775 \mathrm{~B}$ \qquad
$(5) \times 2.857 \rightarrow 12.322=17.142 A+8.162$ B.....(7)
(6) $\mathrm{x} 6 \rightarrow 13.602=17.142 \mathrm{~A}+10.65 \mathrm{~B}$
(8) $-(7) \rightarrow \quad 1.28=2.488 \mathrm{~B} \quad \rightarrow \mathrm{~B}=0.51$

Putting B in (5), $6 \mathrm{~A}=4.313-1.457 \rightarrow \mathrm{~A}=0.48$

x	1	2	3	4	5	6
y	2.98	4.26	5.21	6.10	6.80	7.50

x	y	$\mathrm{X}=\log \mathrm{x}$	$\mathrm{Y}=\log \mathrm{y}$	XY	X^{2}
1	2.98	0.000	0.474	0.000	0.000
2	4.26	0.301	0.629	0.189	0.091
3	5.21	0.477	0.717	0.342	0.228
4	6.10	0.602	0.785	0.473	0.362
5	6.80	0.699	0.833	0.582	0.489
6	7.50	0.778	0.875	0.681	0.606
		2.857	4.313	2.267	1.775

$\therefore b=B=\mathbf{0 . 5 1}$

$$
\begin{align*}
\mathrm{a} & =\operatorname{Antilog}(\mathrm{A}) \tag{6}\\
& =\operatorname{Antilog}(0.48)=3.020 \tag{8}
\end{align*}
$$

\therefore The fitted curve is given by,

$$
y=3.020 \mathrm{x}^{0.51} \cong 3 x^{0.5}=3 \sqrt{x}
$$

Correlation and Regression

Curve fitting

Qn 4: Fit the curve $y=a b^{x}$ for
Taking log on both sides,
$\log y=\log a+x \log b$
Let $\mathrm{Y}=\log \mathrm{y}, \mathrm{A}=\log \mathrm{a}$
$B=\log b$ and $X=x$
Then (1) gives $Y=A+B X \ldots$ (2)
The normal equations for
fitting the linear equation (2)are
$\Sigma \mathrm{Y}=\mathrm{nA}+\mathrm{B} \Sigma \mathrm{X}$
$\Sigma X Y=A \Sigma \mathrm{X}+\mathrm{B} \Sigma X^{2}$
Substituting from table in (3) and (4)
$11.58=5 A+20 B$
$47.13=20 \mathrm{~A}+90 \mathrm{~B}$
(5) $\times 20 \rightarrow 231.60=100 \mathrm{~A}+400$ B.....(7)
(6) $\times 5 \rightarrow 235.65=100 \mathrm{~A}+450 \mathrm{~B}$.
$(8)-(7) \rightarrow 4.05=50 B \quad \rightarrow B=0.09$

x	$\mathbf{2}$	$\mathbf{3}$	4	5	6
y	144	172.8	207.4	248.8	298.5

X	Y	$\mathrm{X}=\mathrm{x}$	$\mathrm{Y}=\log \mathrm{y}$	XY	X^{2}
2	144.00	2.00	2.16	4.32	4.0
3	172.80	3.00	2.24	6.71	9.0
4	207.40	4.00	2.32	9.27	16.0
5	248.80	5.00	2.40	11.98	25.0
6	298.50	6.00	2.47	14.85	36.0
		20.00	11.58	47.13	90.0

Putting B in (5), $5 \mathrm{~A}=11.58-1.8 \rightarrow \mathrm{~A}=1.96$
$\therefore \mathrm{b}=\operatorname{Antilog}(\mathrm{B})=\operatorname{Antilog}(0.09)=1.23$ $a=\operatorname{Antilog}(A)=\operatorname{Antilog}(1.96)=91.20$
\therefore The fitted curve is given by,

$$
y=91.20(1.23)^{x}
$$

Correlation and Regression

Curve fitting

Qn 5: Fit the curve $y=a e^{b x}$ for
Taking log on both sides,
$\log y=\log a+b x \cdot \log _{10} e$
$\log \mathrm{y}=\log \mathrm{a}+\mathrm{b} \log _{10} e \cdot \mathrm{x} \ldots$ (1)
Let $\mathrm{Y}=\log \mathrm{y}, \mathrm{A}=\log \mathrm{a}, \mathrm{X}=\mathrm{x}$
$\mathrm{B}=\mathrm{b} . \log _{10} e=0.4343 \mathrm{~b}$
Then (1) gives $\mathrm{Y}=\mathrm{A}+\mathrm{BX} .$. (2)
The normal equations for
fitting the linear equation (2)are
$\Sigma Y=n A+B \Sigma X \ldots \ldots . . .(3)$
$\Sigma X Y=A \Sigma X+B \Sigma X^{2} \ldots \ldots . .(4)$
Substituting from table in (3) and (4)

$$
\begin{equation*}
8.18=6 A+21 B \tag{5}
\end{equation*}
$$

$36.70=21 \mathrm{~A}+91 \mathrm{~B}$
$(5) \times 21 \rightarrow 171.78=126 \mathrm{~A}+441 \mathrm{~B}$
(6) $\times 6 \rightarrow 220.20=126 \mathrm{~A}+546 \mathrm{~B}$
$(8)-(7) \rightarrow 48.42=105 \mathrm{~B} \rightarrow \mathrm{~B}=0.46$

x	1	2	3	4	5		6
y	1.6	4.5	13.8	40.2	125.3	300	
x	y	$\mathrm{X}=\mathrm{x}$	$\mathrm{Y}=\log \mathrm{y}$	$\mathrm{X} Y$	X^{2}		
1	1.60	1.00	0.20	0.20	1.0		
2	4.50	2.00	0.65	1.31	4.0		
3	13.80	3.00	1.14	3.42	9.0		
4	40.20	4.00	1.60	6.42	16.0		
5	125.30	5.00	2.10	10.49	25.0		
6	300	6.00	2.48	14.86	36.0		
		21.00	8.18	36.70	91.0		

$$
\begin{equation*}
\therefore \mathrm{b}=\frac{\mathrm{B}}{0.4343}=\frac{0.46}{.4343}=\mathbf{1 . 0 6} \tag{6}
\end{equation*}
$$

$\mathrm{a}=\operatorname{Antilog}(\mathrm{A})=\operatorname{Antilog}(-0.25)$
$=$ Antilog $(\overline{1} .75)=0.5623$
The fitted curve is given by,

$$
\begin{equation*}
y=0.5623(e)^{1.06 x} \tag{8}
\end{equation*}
$$

Putting B in (5), $6 \mathrm{~A}=8.18-9.66 \rightarrow \mathrm{~A}=-0.25$

Correlation and Regression

Coefficient of correlation

Coefficient of correlation is a numerical measure of the degree of linear relationship between two variables.
Karl Pearson's product moment correlation coefficient (usually denoted by r or $r_{x y}$) is the ratio of covariance between the variables to the product of standard deviations of the variables.

$$
\mathrm{r}=\frac{\text { Covariance between the variables } x \text { and } y}{\text { product of standard deviations of } x \text { and } y}=\frac{\operatorname{Cov}(x, y)}{\sigma_{x} \sigma_{y}}
$$

$$
=\frac{\frac{1}{n} \sum\{(x-\bar{x})(y-\bar{y})\}}{\sqrt{\frac{1}{n} \sum(x-\bar{x})^{2}} \sqrt{\frac{1}{n} \sum(y-\bar{y})^{2}}}=\frac{\sum\{(x-\bar{x})(y-\bar{y})\}}{\sqrt{\sum(x-\bar{x})^{2}} \sqrt{\sum(y-\bar{y})^{2}}}
$$

$$
=\frac{\frac{\sum x y}{n}-\left(\frac{\sum x}{n}\right)\left(\frac{\sum y}{n}\right)}{\sqrt{\frac{\sum x^{2}}{n}-\left(\frac{\sum x}{n}\right)^{2}} \sqrt{\frac{\sum y^{2}}{n}-\left(\frac{\sum y}{n}\right)^{2}}}
$$

x	y	$x y$	x^{2}	y^{2}
----	----	----	---	---
----	----	----	----	---
Σx	Σy	$\Sigma x y$	Σx^{2}	Σy^{2}

Correlation and Regression

 Let $r_{x y}$ denote the correlation coefficient between two variables X and Y .Then $r_{x y}=\frac{\operatorname{Cov}(x, y)}{\sigma_{x} \sigma_{y}}=\frac{\frac{1}{n} \sum\{(x-\bar{x})(y-\bar{y})\}}{\sqrt{\frac{1}{n} \sum(x-\bar{x})^{2}} \sqrt{\frac{1}{n} \sum(y-\bar{y})^{2}}}$
Consider the transformations of the form $\mathrm{U}=\frac{X-a}{b}$ and $\mathrm{V}=\frac{Y-c}{d}$
Then $\bar{u}=\frac{\bar{x}-a}{b}$ and $\bar{v}=\frac{\bar{y}-c}{d}$. Let $r_{u v}$ be the correlation coefficient between the transformed variables U and V . Then we have,

$$
\begin{aligned}
r_{u v} & =\frac{\operatorname{Cov}(u, v)}{\sigma_{u} \sigma_{v}}=\frac{\frac{1}{n} \sum\{(\boldsymbol{u}-\overline{\boldsymbol{u}})(\boldsymbol{v}-\overline{\boldsymbol{v}})\}}{\sqrt{\frac{1}{n} \sum(\boldsymbol{u}-\overline{\boldsymbol{u}})^{2}} \sqrt{\frac{1}{n} \sum(\boldsymbol{v}-\overline{\boldsymbol{v}})^{2}}} \\
& =\frac{\frac{1}{n} \sum\left\{\left(\frac{x-a}{b}-\frac{\bar{x}-a}{b}\right)\left(\frac{y-c}{d}-\frac{\bar{y}-c}{d}\right)\right\}}{\sqrt{\frac{1}{n} \sum\left(\frac{x-a}{b}-\frac{\bar{x}-a}{b}\right)^{2}} \sqrt{\frac{1}{n} \sum\left(\frac{y-c}{d}-\frac{\bar{y}-c}{d}\right)^{2}}}=\frac{\frac{1}{b d} \frac{1}{n} \sum\{(\boldsymbol{x}-\bar{x})(\boldsymbol{y}-\overline{\boldsymbol{y}})\}}{\frac{\mathbf{1}}{b d} \sqrt{\frac{1}{n} \sum(x-\bar{x})^{2}} \sqrt{\frac{1}{n} \sum(\boldsymbol{y}-\bar{y})^{2}}}=r_{x y}
\end{aligned}
$$

$\therefore r_{u v}=r_{x y}$. Hence r is independent of change of origin and scale

Correlation and Regression

Qn 6: Calculate r from the following details in a data sheet.

$$
\begin{aligned}
& \quad \mathrm{n}=50, \sum x=75, \sum y=80, \sum x^{2}=130, \sum y^{2}=140, \sum x y=120 \\
& \mathrm{r}=\frac{\frac{\sum x y}{n}-\left(\frac{\sum x}{n}\right)\left(\frac{\sum y}{n}\right)}{\sqrt{\frac{\sum x^{2}}{n}-\left(\frac{\sum x}{n}\right)^{2}} \sqrt{\frac{\sum y^{2}}{n}-\left(\frac{\sum y}{n}\right)^{2}}}=\frac{\frac{120}{50}-\left(\frac{75}{50}\right)\left(\frac{80}{50}\right)}{\sqrt{\frac{130}{50}-\left(\frac{75}{50}\right)^{2}} \sqrt{\frac{140}{50}-\left(\frac{80}{50}\right)^{2}}}=0(\text { why? })
\end{aligned}
$$

Qn 7: In the calculation of the above data sheet, one pair $(1.5,2)$ was wrongly taken as $(2.5,1)$. Calculate the correct correlation coefficient Correct $\sum x=75-2.5+1.5=74$
Correct $\sum y=80-1+2=81$
Correct $\sum x^{2}=130-(2.5)^{2}+(1.5)^{2}=126$
Correct $\sum y^{2}=140-(1)^{2}+(2)^{2}=143$
Correct $\sum x y=120-2.5 \mathrm{x} 1+1.5 \mathrm{x} 2=120.5$
Correct $\mathrm{r}=\frac{\frac{\sum x y}{n}-\left(\frac{\sum x}{n}\right)\left(\frac{\sum y}{n}\right)}{\sqrt{\frac{\sum x^{2}}{n}-\left(\frac{\sum x}{n}\right)^{2}} \sqrt{\frac{\sum y^{2}}{n}-\left(\frac{\sum y}{n}\right)^{2}}}=\frac{\frac{120.5}{50}-\left(\frac{74}{50}\right)\left(\frac{81}{50}\right)}{\sqrt{\frac{126}{50}-\left(\frac{74}{50}\right)^{2}} \sqrt{\frac{143}{50}-\left(\frac{81}{50}\right)^{2}}}=$ H.W.

Correlation and Regression

Qn 8: Calculate n from the following details
$\mathrm{r}=0.8, \sum x^{2}=90, \sum x y=60, \sigma_{y}=2.5(\mathrm{x}$ and y are deviations from mean)
We have $\mathrm{r}=\frac{\sum\{(\boldsymbol{x}-\overline{\boldsymbol{x}})(\boldsymbol{y}-\overline{\boldsymbol{y}})\}}{\sqrt{\sum(\boldsymbol{x}-\overline{\boldsymbol{x}})^{2}} \sqrt{\sum(\boldsymbol{y}-\overline{\boldsymbol{y}})^{2}}}$
When x and y are deviations from mean, the above formula becomes,

$$
\begin{aligned}
& \mathrm{r}=\frac{\sum x y}{\sqrt{\sum(x)^{2}} \sqrt{\sum y^{2}}} \longrightarrow r^{2}=\frac{\left(\sum x y\right)^{2}}{\left(\sum x^{2}\right)\left(\sum y^{2}\right)}=\frac{\left(\sum x y\right)^{2}}{\left(\sum x^{2}\right) n \sigma_{y}{ }^{2}} \\
& (0.8)^{2}=\frac{(60)^{2}}{(90) n(2.5)^{2}} \longrightarrow \mathrm{n}=\frac{3600}{90 \times 6.25 \times 0.64}=\mathbf{1 0}
\end{aligned}
$$

Qn 9: Calculate σ_{y} from the following details

$$
\mathrm{r}=0.28, \operatorname{Cov}(\mathrm{x}, \mathrm{y})=7, \mathrm{~V}(\mathrm{X})=9
$$

$$
\mathrm{r}=\frac{\operatorname{Cov}(x, y)}{\sigma_{x} \sigma_{y}}=\frac{\operatorname{Cov}(x, y)}{\sqrt{V(X)} \sqrt{V(Y)}} \quad \longrightarrow 0.28=\frac{7}{\sqrt{9} \sqrt{V(Y)}}
$$

$$
\sigma_{y}=\sqrt{V(Y)}=\frac{7}{\sqrt{9} \times 0.28}=\mathbf{8 . 3 3}
$$

Correlation and Regression

Qn 10: Calculate the correlation coefficient r from following data:

Ht of fathers (X): $65 \quad 66 \quad 67 \quad 67$	68	69	70		72
Ht of sons (Y): $67 \quad 68 \quad 65$	72	72	69		71
$\operatorname{Cov}(x, y)=\frac{\sum x y}{n}-\left(\frac{\sum x}{n}\right)\left(\frac{\sum y}{n}\right)$	x	Y	xY	χ^{2}	Y^{2}
$\mathrm{r}=\sqrt{\sigma_{x} \sigma_{y}}=\sqrt{\sqrt{\frac{\sum x^{2}}{n}-\left(\frac{\sum x}{n}\right)^{2}} \sqrt{\frac{\sum y^{2}}{n}-\left(\frac{\sum y}{n}\right)^{2}}}$	65 66	67	4355 4488	4225	4889 4624
$\operatorname{Cov}(\mathrm{x}, \mathrm{y})=\frac{\sum x y}{n}-\left(\frac{\sum x}{n}\right)\left(\frac{\sum y}{n}\right)=\frac{37560}{8}-\left(\frac{544}{8}\right)\left(\frac{552}{8}\right)$	67 67	65	4355 4556	4489 4489	4225 4624
$=4695-68 \times 69=4695-4692=3$	68	72	4896	4624	5184
$\sigma_{x}=\sqrt{\frac{\sum x^{2}}{n}-\left(\frac{\sum x}{n}\right)^{2}}=\sqrt{\frac{37028}{8}-\left(\frac{544}{8}\right)^{2}}=\sqrt{4.5}=2.12$	69 70	72 69	4968	4761	5184 4761
$\sigma_{x}=\sqrt{\frac{\sum y^{2}}{n}-\left(\frac{\sum y}{n}\right)^{2}}=\sqrt{\frac{38132}{8}-\left(\frac{552}{8}\right)^{2}}=\sqrt{5.5}=2.35$	72 544	71 552	5112	5184	5041
$=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{\mathrm{x}} \sigma_{\mathrm{y}}}=\frac{3}{2.12 \times 2.35}=\mathbf{0 . 6 0 3}$					

Correlation and Regression

Qn 11: Calculate the correlation coefficient r from following data:

Ht of fathers (X): 65	66	67	67	68	69	70	72
Ht of sons (Y): 67	68	65	68	72	72	69	71

$\underline{\operatorname{Cov}(x, y)} \sigma_{x}=\frac{1}{n} \sum\{(x-\bar{x})(y-\bar{y})\}$	X	Y	U	V	UV	U^{2}	V^{2}
$\mathrm{r}=\frac{\sigma^{\prime} \sigma_{y}}{\sigma^{\prime}}$	65	67	-3	-2	6	9	4
	66	68	-2	-1	2	4	1
	67	65	-1	-4	4	1	16
	67	68	-1	-1	1	1	1
Let $\mathrm{U}=(\mathrm{X}-\bar{X})$ and $\mathrm{V}=(\mathrm{Y}-\bar{Y})$$\overline{\mathrm{x}}=\frac{\sum \mathrm{x}}{\mathrm{n}}=\frac{544}{8}=68, \overline{\mathrm{y}}=\frac{\sum \mathrm{y}}{\mathrm{n}}=\frac{552}{8}=69$	68	72	0	3	0	0	
	69	72	1	3	3	1	9
	70	69	2	0	0	4	0
$\frac{\sum\{(\boldsymbol{x}-\overline{\boldsymbol{x}})(\boldsymbol{y}-\bar{y})\}}{\sqrt{\sum(\boldsymbol{x}-\bar{x})^{2}} \sqrt{\sum(\boldsymbol{y}-\bar{y})^{2}}}$	72	71	4	2	8	16	4
	544	552	0	0	24	36	44

$=\frac{\sum u v}{\sqrt{\sum(u)^{2}} \sqrt{\sum(v)^{2}}}=\frac{24}{\sqrt{36} \sqrt{44}}=0.603$
Note: This method is convenient when the means \bar{x} and \bar{y} are integers.

Correlation and Regression

Regression Analysis

Regression Analysis is a mathematical measure of the average relationship between two or more correlated variables.

If there are only two variables under consideration then one is taken as the independent variable and the other as dependent variable, and regression means an average relationship between them. Regression explains the average change in dependent variable with a change in the independent variable.

If the variables in a bivariate distribution are correlated, the points in the scatter diagram will show a tendency to cluster around some curve called the curve of regression. The mathematical equation of the regression curve is called regression equation. If the points in the scatter diagram are clustered around a straight line it is called the line of regression and we say that there is a linear regression between the variables. In this case the regression curve is a polynomial of degree one. When the degree of the polynomial corresponding to any regression curve is more than one, we call the regression to be curvilinear.

In practice, the regression analysis deals with estimation of the value of dependent variable for some particular value of the independent variable. The estimate is called regression estimate and equation of the line used for estimation is called the regression equation.

Correlation and Regression

Two Regression Lines (What? How? Why?)

When we have two variables under consideration say X and Y , we can have two regression equations, one for estimating the value of dependent variable Y for a particular value of independent variable X and the other for estimating the value of dependent variable X for a particular value of independent variable Y .

When the variable Y is taken as dependent variable and X is taken as the independent variable (for estimating Y for a given value of X) the regression equation is called the regression equation of y on x .

When the variable X is taken as dependent variable and Y is taken as the independent variable (for estimating X for a given value of Y) the regression equation is called the regression equation of x on y.

The regression equation of y on x is obtained by minimising the sum of squares of errors parallel to y axis and the regression equation of x on y is obtained by minimising the sum of squares of errors parallel to x axis.

When all the points in the scatter diagram are exactly on a straight line, the error at any point is zero and hence the two regression lines will become one and the same or they coincides. When all the points in the scatter diagram are not exactly on a straight line, the two procedures using L.S principle will give two different equations.

Correlation and Regression

Regression Analysis

Standard form of the two Regression Lines.

Assume that the regression equation used for estimating y when x is known (regression equation of y on x) is given $\mathrm{by}, \mathrm{y}=\mathrm{a}+\mathrm{bx} \ldots \ldots$. (1)
Let $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \ldots \ldots . .\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ be the n pairs of observations on the variables X and Y. When the value of the independent variable X is say x_{i}, the observed value of the dependent variable Y is y_{i} and the corresponding estimated value of Y is given by $\widehat{y_{\mathrm{i}}}=\mathrm{a}+\mathrm{b} \mathrm{x}_{\mathrm{i}}$. The difference between y_{i} and $\widehat{y_{\mathrm{i}}}$ is the error denoted by e_{i}.
$\therefore e_{\mathrm{i}}=y_{\mathrm{i}}-\widehat{y_{\mathrm{i}}}=y_{\mathrm{i}}-\left(\mathrm{a}+\mathrm{b} \mathrm{x}_{\mathrm{i}}\right)=\left(y_{\mathrm{i}}-\mathrm{a}-\mathrm{b} \mathrm{x}_{\mathrm{i}}\right)$
The sum of squares of errors (S) is given by, $\mathrm{S}=\sum e_{i}{ }^{2}=\sum\left(y_{\mathrm{i}}-\mathrm{a}-\mathrm{b} \mathrm{x}_{\mathrm{i}}\right)^{2}$
By the Principle of Least Squares, the best
estimates of a and b are those values which
minimise S. For this $\frac{\partial S}{\partial a}=0$ and $\frac{\partial S}{\partial b}=0$
The above two equations will give the
following normal equations,
$\Sigma \mathrm{y}=\mathrm{na}+\mathrm{b} \Sigma \mathrm{x}$
$\Sigma \mathrm{xy}=\mathrm{a} \Sigma \mathrm{x}+\mathrm{b} \Sigma x^{2}$

Correlation and Regression

Solving the normal equations, we get values of a and b.

$$
\begin{align*}
& \Sigma \mathrm{y}=\mathrm{na}+\mathrm{b} \Sigma \mathrm{x} \tag{3}\\
& \Sigma \mathrm{xy}=\mathrm{a} \Sigma \mathrm{x}+\mathrm{b} \Sigma x^{2} \tag{4}\\
& \text { (3) } \mathrm{x}(\Sigma \mathrm{x}) \longrightarrow \quad(\Sigma \mathrm{x})(\Sigma \mathrm{y})=\mathrm{na}(\Sigma \mathrm{x})+\mathrm{b}(\Sigma \mathrm{x})(\Sigma \mathrm{x}) \\
& (\Sigma \mathrm{x})(\Sigma \mathrm{y})=\mathrm{na}(\Sigma \mathrm{x})+\mathrm{b}(\Sigma \mathrm{x})^{2} \tag{5}\\
& \text { (4) } \mathrm{xn} \quad \longrightarrow \quad \mathrm{n} \Sigma \mathrm{xy}=\mathrm{na} \Sigma \mathrm{x}+\mathrm{nb} \Sigma \mathrm{x}^{2} \tag{6}\\
& \text { (6) }-(5) \longrightarrow \quad \mathrm{n} \Sigma \mathrm{xy}-(\Sigma \mathrm{x})(\Sigma \mathrm{y})=\mathrm{nb} \Sigma \mathrm{x}^{2}-\mathrm{b}(\Sigma \mathrm{x})^{2} \\
& =\mathrm{b}\left\{\mathrm{n} \Sigma x^{2}-(\Sigma \mathrm{x})^{2}\right\} \\
& \therefore b=\frac{\mathrm{n} \Sigma \mathrm{xy}-(\Sigma \mathrm{x})(\Sigma \mathrm{y})}{\mathrm{n} \Sigma x^{2}-(\Sigma \mathrm{x})^{2}} \\
& =\frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}} \frac{\left\{\mathrm{n} \sum \mathrm{xy}-(\Sigma \mathrm{x})(\Sigma \mathrm{y})\right\}}{\left\{\mathrm{n} \Sigma x^{2}-(\Sigma \mathrm{x})^{2}\right\}} \\
& =\frac{\frac{\sum x y}{n}-\frac{\sum x}{n} \frac{\sum y}{n}}{\frac{\sum x^{2}}{n}-\left(\frac{\sum x}{n}\right)^{2}}=\frac{\operatorname{Cov}(\mathbf{x}, \mathbf{y})}{\boldsymbol{\sigma}_{\mathbf{x}}{ }^{2}} \tag{7}
\end{align*}
$$

Correlation and Regression

(1) gives, $\bar{y}=\mathrm{a}+\mathrm{b} \bar{x}$

$$
\begin{align*}
& \therefore \mathrm{a}=\bar{y}-\mathrm{b} \bar{x}=\bar{y}-\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{\mathrm{x}}^{2}} \bar{x} \\
& \therefore \mathrm{a}=\left\{\bar{y}-\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{\mathrm{x}}{ }^{2}} \bar{x}\right\} \ldots \ldots . \tag{8}
\end{align*}
$$

Using (7) and (8) in (1), we get $\mathrm{y}=\left\{\bar{y}-\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{\mathrm{x}}{ }^{2}} \bar{x}\right\}+\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{\mathrm{x}}{ }^{2}} x$
$i e, \mathrm{y}-\bar{y}=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{\mathrm{x}}{ }^{2}}(x-\bar{x}) \ldots \ldots \ldots . .$. Standard form 1
$i e, \mathrm{y}-\bar{y}=\frac{r \sigma_{y}}{\sigma_{x}}(x-\bar{x}) \ldots \ldots \ldots \ldots \ldots$......Standard form 2

$$
\begin{aligned}
& r=\frac{\operatorname{Cov}(x, y)}{\sigma_{x} \sigma_{y}} \\
& \operatorname{Cov}(x, y)=r \quad \sigma_{x} \sigma_{y}
\end{aligned}
$$ $i e, \mathrm{y}-\bar{y}=b_{y x}(x-\bar{x}) \ldots \ldots \ldots \ldots . .$. Standard form 3 ,

$$
\text { where } b_{y x}=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{\mathrm{x}}{ }^{2}}=\frac{r \sigma_{y}}{\sigma_{x}} \text { is called the regression coefficient of } \mathrm{y} \text { on } \mathrm{x}
$$

Note: From Standard form 1 above we get $\mathrm{y}=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{\mathrm{x}}{ }^{2}} x+\left(\bar{y}-\frac{\operatorname{Cov}(x, y)}{\sigma_{\mathrm{x}}{ }^{2}} \bar{x}\right)$, which is of the form $y=a+b x$
Note: Slope of the regression line of y on x is given by $\mathbf{b}=\frac{\boldsymbol{\operatorname { C o v } (\boldsymbol { x } , \boldsymbol { y })}}{\sigma_{x}{ }^{2}}=\frac{\boldsymbol{r} \boldsymbol{\sigma}_{y}}{\sigma_{x}}=\boldsymbol{b}_{\boldsymbol{y x}}$

Correlation and Regression

Similarly if the regression line of x on y can be taken as $x=c+d y$
As in the case of the regression equation of y on x, the standard form of the regression line of x on y can be obtained as
ie, $x-\bar{x}=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{y}{ }^{2}}(y-\bar{y}) \ldots \ldots \ldots . .$.tandard form 1
ie, $x-\bar{x}=\frac{r \sigma_{x}}{\sigma_{y}}(y-\bar{y}) \ldots \ldots \ldots \ldots \ldots$......Standard form 2
ie, $x-\bar{x}=b_{x y}(y-\bar{y}) \ldots \ldots$. Standard form 3,

$$
\begin{aligned}
& \mathrm{r}=\frac{\operatorname{Cov}(x, y)}{\sigma_{x} \sigma_{y}} \\
& \operatorname{Cov}(\mathrm{x}, \mathrm{y})=\mathrm{r} \quad \sigma_{x} \sigma_{y}
\end{aligned}
$$

$$
\text { where } b_{x y}=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{y}{ }^{2}}=\frac{r \sigma_{x}}{\sigma_{y}} \text { is called the regression coefficient of } \mathrm{x} \text { on } \mathrm{y}
$$

Note: From Standard form 1 above we get $(y-\bar{y})=\frac{\sigma_{y}{ }^{2}}{\operatorname{Cov}(x, y)}(x-\bar{x})$

$$
\text { ie, } y=\frac{\sigma_{y}{ }^{2}}{\operatorname{Cov}(x, y)} x+\left(\bar{y}-\frac{\sigma_{y}{ }^{2}}{\operatorname{Cov}(x, y)} \bar{x}\right) \text { which is of the form } y=m x+c
$$

Note: Slope of the regression line of x on y is given by $\mathbf{m}=\frac{\sigma_{y}^{2}}{\operatorname{Cov}(x, y)}=\frac{\boldsymbol{\sigma}_{\boldsymbol{y}}}{\boldsymbol{r} \sigma_{\boldsymbol{x}}}=\boldsymbol{b}_{\boldsymbol{x} \boldsymbol{y}}$

Correlation and Regression

Comparison of Regression line of y on x and regression line of x on y

Regression line of y on x

Used to estimate y when x is known
Y is the dependent variable
Obtained by minimising the sum of squares of errors parallel to the y axis

The R.L of y on x can be $y=a x+b$
Standard form of R.L of y on x are :

- $\mathbf{y}-\bar{y}=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{\mathrm{x}}{ }^{2}}(x-\bar{x})$
- $\mathbf{y}-\bar{y}=\frac{r \sigma_{y}}{\sigma_{x}}(x-\bar{x})$
- $\mathbf{y}-\bar{y}=b_{y x}(x-\bar{x})$
$b_{y x}=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{\mathrm{x}}{ }^{2}}=\frac{r \sigma_{y}}{\sigma_{x}}$ is called the regression coefficient of y on x, which measures the change in y for unit change in x .

Regression line of x on y
Used to estimate x when y is known
X is the dependent variable
Obtained by minimising the sum of squares of errors parallel to the x axis

The R.L of y on x can be $\mathrm{x}=\mathrm{cy}+\mathrm{d}$
Standard form of R.L of x on y are :

- $x-\bar{x}=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{y}{ }^{2}}(y-\bar{y})$
- $x-\bar{x}=\frac{r \sigma_{x}}{\sigma_{y}}(y-\bar{y})$
- $x-\bar{x}=b_{x y}(y-\bar{y})$
$b_{x y}=\frac{\operatorname{Cov}(x, y)}{\sigma_{y}{ }^{2}}=\frac{r \sigma_{x}}{\sigma_{y}}$ is called the regression coefficient of x on y, which measures the change in x for unit change in y .

Correlation and Regression

Remarks about Correlation and Regression

Correlation

Identify the nature and Measure the degree of relationship between the variables.

Correlation coefficient is a relative measure
Correlation coefficient is the signed Geometric mean of regression coefficients $\mathrm{r}= \pm \sqrt{b_{y x} b_{x y}}$

If both regression coefficients are positive, the sign of correlation coefficient is positive. If both are negative, r is also negative

Correlation coefficient is not affected by change of origin and scale

Correlation coefficient is a symmetrical function between x and y

Regression

Measure the average relationship between the variables

Regression is an absolute measure of relationship

There are two regression lines and they are not mutually reversible

Both regression coefficients are of the same sign (either both positive or bot negative)

Regression coefficients give the slope of regression lines. They measure the average change in dependent variable when independent variable changes by one unit.

Regression coefficients are affected by change of scale.

Correlation and Regression

P.T the correlation coefficient is the G.M of regression coefficients We have the regression coefficients given by,

$$
\begin{aligned}
& b_{y x}=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{\mathrm{x}}{ }^{2}}=\frac{r \sigma_{y}}{\sigma_{x}} \text { and } b_{x y}=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{y}{ }^{2}}=\frac{r \sigma_{x}}{\sigma_{y}} \\
& \begin{aligned}
\therefore b_{y x} \cdot b_{x y}=\frac{r \sigma_{y}}{\sigma_{x}} \cdot \frac{r \sigma_{x}}{\sigma_{y}}=r^{2} \longrightarrow \mathrm{r} & = \pm \sqrt{b_{y x} \cdot b_{x y}} \\
& = \pm \text { GM of regression coefficients }
\end{aligned}
\end{aligned}
$$

If both the regression coefficients are positive, the value of r is positive. If both the regression coefficients are negative, the value of r is negative. The regression coefficients, $b_{y x}=\frac{\operatorname{Cov}(x, y)}{\sigma_{x}{ }^{2}}$ and $b_{x y}=\frac{\operatorname{Cov}(x, y)}{\sigma_{y}{ }^{2}}$ can not be of opposite signs since sign of $\operatorname{cov}(x, y)$ decides the sign of regression coefficients.
$\therefore \mathrm{r}=+\sqrt{b_{y x} \cdot b_{x y}}$ if both $b_{y x}$ and $b_{x y}$ are positive $\mathrm{r}=-\sqrt{b_{y x} \cdot b_{x y}}$ if both $b_{y x}$ and $b_{x y}$ are negative

Correlation and Regression

Obtain the angle between the two regression lines
The regression line of y on x is given by, $\mathrm{y}-\bar{y}=\frac{r \sigma_{y}}{\sigma_{x}}(x-\bar{x})$
The above equation can be written as $\mathrm{y}=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{\mathrm{x}}{ }^{2}} x+\left(\bar{y}-\frac{\operatorname{Cov}(x, y)}{\sigma_{\mathrm{x}}{ }^{2}} \bar{x}\right)$, which is of the form $y=a+b x$
Then the slope of the regression line of y on $x\left(m_{1}\right)=\frac{\boldsymbol{\operatorname { C o v } (x , y)}}{\boldsymbol{\sigma}_{x}{ }^{2}}=\frac{\boldsymbol{r} \boldsymbol{\sigma}_{y}}{\boldsymbol{\sigma}_{x}}$ The regression line of x on y is given by, $\mathrm{x}-\bar{x}=\frac{r \sigma_{x}}{\sigma_{y}}(y-\bar{y})$
The above equation can be written as $y=\frac{\sigma_{y}{ }^{2}}{\operatorname{Cov}(x, y)} x+\left(\bar{y}-\frac{\sigma_{y}{ }^{2}}{\operatorname{Cov}(x, y)} \bar{x}\right)$, which is of the form $y=m x+c$
Then the slope of the regression line of x on $y\left(m_{2}\right)=\frac{\sigma_{y}{ }^{2}}{\operatorname{Cov}(x, y)}=\frac{\boldsymbol{\sigma}_{y}}{\boldsymbol{r} \sigma_{x}}$
Let θ be the angle between the two regression lines.
Then $\tan \theta= \pm \frac{m_{1}-m_{2}}{1+m_{1} m_{2}}$

Correlation and Regression

Angle between the regression lines - Contd

$$
\begin{aligned}
\tan \theta & = \pm \frac{m_{2}-m_{1}}{1+m_{1} m_{2}}= \pm \frac{\frac{\sigma_{y}}{r \sigma_{x}}-\frac{r \sigma_{y}}{\sigma_{x}}}{1+\frac{r \sigma_{y} \sigma_{y}}{\sigma_{x} r \sigma_{x}}}= \pm \frac{\frac{\sigma_{y}-r^{2} \sigma_{y}}{r \sigma_{x}}}{1+\frac{\sigma_{y}^{2}}{\sigma_{x}^{2}}}= \pm\left(\frac{1-r^{2}}{r}\right) \frac{\frac{\sigma_{y}}{\sigma_{x}}}{\frac{\sigma_{x}^{2}+\sigma_{y}^{2}}{\sigma_{x}^{2}}} \\
& = \pm\left(\frac{1-r^{2}}{r}\right)\left(\frac{\sigma_{y}}{\sigma_{x}}\right)\left(\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{y}^{2}}\right)= \pm\left(\frac{1-r^{2}}{r}\right)\left(\frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}\right)
\end{aligned}
$$

Positive or negative sign is taken according as the angle is acute or obtuse. If θ is an acute angle, $\theta=\tan ^{-1}\left[\left(\frac{1-r^{2}}{|r|}\right)\left(\frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}\right)\right]$
If θ is an obtuse angle, $\theta=\tan ^{-1}\left[\left(\frac{r^{2}-\mathbf{1}}{|\boldsymbol{r}|}\right)\left(\frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}\right)\right]$
Note 1: When $\mathrm{r}=0, \tan \theta=\infty$, giving $\theta=90$, i.e., both the regression lines are perpendicular to each other
Note 1: When $\mathrm{r}= \pm 1, \tan \theta=0$, giving $\theta=0$, i.e., both the regression lines coincides with each other. In this case there is a perfect correlation (either positive when $r=1$ or negative when $r=-1$) between the variables involved.

Correlation and Regression

Standard error of estimate of Y and Standard error of estimate of X Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots \ldots\left(x_{n}, y_{n}\right)$ be the n pairs of observations.
The regression line of y on x is given by, $y-\bar{y}=\frac{r \sigma_{y}}{\sigma_{x}}(x-\bar{x})$
Corresponding to the point $\left(x_{i}, y_{i}\right)$, the value of Y is observed as y_{i} and estimated as, $\widehat{\mathrm{y}_{\mathrm{i}}}=\overline{\mathrm{y}}+\frac{\mathrm{r} \sigma_{\mathrm{y}}}{\sigma_{\mathrm{x}}}(\mathrm{x}-\overline{\mathrm{x}})$
The standard error of estimate of y (denoted by S_{y}) is the square root of the arithmetic mean of the squares of deviations between y_{i} and $\widehat{y_{i}}$.

$$
\begin{aligned}
\therefore S_{\mathrm{y}}^{2} & =\frac{1}{n} \sum\left(\mathrm{y}_{\mathrm{i}}-\widehat{\mathrm{y}_{\mathrm{i}}} \cdot\right)^{2}=\frac{1}{n} \sum\left\{\mathrm{y}_{\mathrm{i}}-\left[\overline{\mathrm{y}}+\frac{\mathrm{r} \sigma_{\mathrm{y}}}{\sigma_{\mathrm{x}}}(\mathrm{x}-\overline{\mathrm{x}})\right]\right\}^{2} \\
& =\frac{1}{n} \sum\left\{\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)-\frac{\mathrm{r} \sigma_{\mathrm{y}}}{\sigma_{\mathrm{x}}}(\mathrm{x}-\overline{\mathrm{x}})\right\}^{2} \\
& =\frac{1}{n} \sum\left\{\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)^{2}+\left(\frac{\mathrm{r} \sigma_{\mathrm{y}}}{\sigma_{\mathrm{x}}}(\mathrm{x}-\overline{\mathrm{x}})\right)^{2}-2\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right) \frac{\mathrm{r} \sigma_{\mathrm{y}}}{\sigma_{\mathrm{x}}}(\mathrm{x}-\overline{\mathrm{x}})\right\} \\
& =\frac{1}{n} \sum\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)^{2}+r^{2} \frac{\sigma_{\mathrm{y}}^{2}}{\sigma_{\mathrm{x}}^{2}} \frac{1}{n} \sum\left(x_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}-2 \frac{\mathrm{r} \sigma_{\mathrm{y}}}{\sigma_{\mathrm{x}}} \frac{1}{n} \sum\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)(\mathrm{x}-\overline{\mathrm{x}})
\end{aligned}
$$

Correlation and Regression

Standard error of estimate of Y and Standard error of estimate of X

$$
\begin{aligned}
& =\frac{1}{n} \sum\left(y_{i}-\bar{y}\right)^{2}+r^{2} \frac{\sigma_{\mathrm{y}}{ }^{2}}{\sigma_{\mathrm{x}}^{2}} \frac{1}{n} \sum\left(x_{i}-\overline{\mathrm{x}}\right)^{2}-2 \frac{r \sigma_{y}}{\sigma_{x}} \frac{1}{n} \sum\left(y_{i}-\bar{y}\right)(x-\bar{x}) \\
& ={\sigma_{y}}^{2}+r^{2} \frac{\sigma_{y}{ }^{2}}{\sigma_{x}{ }^{2}} \sigma_{x}{ }^{2}-2 \frac{r \sigma_{y}}{\sigma_{x}} \operatorname{Cov}(\mathrm{x}, \mathrm{y}) \\
& =\sigma_{y}{ }^{2}+r^{2}{\sigma_{y}}^{2}-2 \frac{r \sigma_{y}}{\sigma_{x}} \cdot \mathrm{r} \sigma_{x} \sigma_{\mathrm{y}} \\
& =\sigma_{y}{ }^{2}-r^{2}{\sigma_{y}}^{2} \\
& =\left(1-r^{2}\right){\sigma_{y}}^{2}
\end{aligned}
$$

\therefore Standard Error of estimate of $y, S_{y}=\sqrt{\left(1-r^{2}\right)} \sigma_{y}$
Similarly Standard Error of estimate of $x, S_{x}=\sqrt{\left(1-r^{2}\right)} \sigma_{x}$
Note: To show that $-1 \leq r \leq 1$
Being a perfect square, $S_{\mathrm{y}}{ }^{2} \geq 0$ always
i.e.. $\left(1-r^{2}\right) \sigma_{y}{ }^{2} \geq 0 \longrightarrow\left(1-r^{2}\right) \geq 0 \longrightarrow r^{2} \leq 1 \longrightarrow-1 \leq r \leq 1$

Correlation and Regression

To find the mean of variables and identification of the regression lines
To find the mean of variables: The two regression lines are given by
$\mathrm{y}-\bar{y}=\frac{r \sigma_{y}}{\sigma_{x}}(x-\bar{x})$
$\mathrm{x}-\bar{x}=\frac{r \sigma_{x}}{\sigma_{y}}(y-\bar{y})$
The point (\bar{x}, \bar{y}) satisfies both the equations (1) and (2). Hence (\bar{x}, \bar{y}) is the point of intersection of (1) and (2), which can be obtained by solving the regression lines. Therefore, the mean of the variables are obtained by solving the regression lines. The value of x will give \bar{x} and value of y will give \bar{y}.
To identify the regression lines: Assume any one the lines to be the regression line of y on x and express it in the form $\mathrm{y}=\mathrm{ax}+\mathrm{b}$.
Assume the other line to be the regression line of x on y and express it in the form $\mathrm{x}=\mathrm{cy}+\mathrm{d}$.
If the assumptions are correct, the value of ac is nothing but r^{2} (Why?)
But $r^{2} \leq 1$ (Why?).
\therefore The assumptions are correct if ac ≤ 1
\therefore If ac ≤ 1, assumptions are correct, a and c will give the regression coefficients.

Correlation and Regression

Regression Analysis

Question No.1: A computer while calculating the regression coefficients between two variables x and y from 25 pairs of observations obtained the following results:

$$
\mathrm{n}=25, \sum x=125, \sum y=100, \sum x^{2}=650, \sum y^{2}=460, \sum x y=508 .
$$

It was however, discovered in checking that it had copied down two pairs of observations as $(6,14)$ and $(8,6)$ while the correct pairs were $(8,12)$ and $((6,8)$.
Obtain (1) Regression coefficients
(2) Regression lines
(3) r
(4) Value of X when $\mathrm{Y}=3$
(5) value of Y for value of X in (4)

Answer: We have, $\sum x=125, \sum y=100, \sum x^{2}=650, \sum y^{2}=460, \sum x y=508$
Correct $\sum x=125-(8+6)+(8+6)=125$
Correct $\sum y=100-(12+8)+(14+6)=100$
Correct $\sum x^{2}=650-\left(8^{2}+6^{2}\right)+\left(6^{2}+8^{2}\right)=650$
Correct $\sum y^{2}=460-\left(14^{2}+6^{2}\right)+\left(12^{2}+8^{2}\right)=436$
Correct $\sum x y=508-(6 x 14+8 x 6)+(8 x 12+6 x 8)=520$
$\operatorname{Cov}(\mathrm{x}, \mathrm{y})=\frac{\sum x y}{n}-\frac{\sum x}{n} \frac{\sum y}{n}=\frac{520}{25}-\frac{125}{25} \frac{100}{25}=\frac{25 \times 520-125 \times 100}{25 \times 25}=\frac{125 \times 104-125 \times 100}{25 \times 25}=\frac{\mathbf{4}}{\mathbf{5}}$
$\sigma_{x}=\sqrt{\frac{\sum x^{2}}{n}-\left(\frac{\sum x}{n}\right)^{2}}=\sqrt{\frac{650}{25}-\left(\frac{125}{25}\right)^{2}}=\sqrt{\frac{25 \times 650-125 \times 125}{25 \times 25}}=\sqrt{\frac{125 \times 130-125 \times 125}{25 \times 25}}=\mathbf{1}$
$\sigma_{y}=\sqrt{\frac{\sum y^{2}}{n}-\left(\frac{\sum y}{n}\right)^{2}}=\sqrt{\frac{436}{25}-\left(\frac{100}{25}\right)^{2}}=\sqrt{\frac{25 \times 4 \times 109-100 \times 100}{25 \times 25}}=\sqrt{\frac{100 \times 109-100 \times 100}{25 \times 25}}=\frac{\mathbf{6}}{\mathbf{5}}$

Correlation and Regression

(1)Tofind the regression coefficients

Regression coefficient of y on $x, b_{y x}=\frac{\operatorname{Cov}(x, y)}{\sigma_{x}{ }^{2}}=\frac{4 / 5}{1}=\frac{4}{5}$
Regression coefficient of x on $\mathrm{y}, \mathrm{b}_{\mathrm{xy}}=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{\mathrm{y}}{ }^{2}}=\frac{4 / 5}{(6 / 5)^{2}}=\frac{4}{5} \cdot \frac{25}{36}=\frac{5}{9}$
(2)Tofind the regression lines

Regression line of y on x is given by, $\mathrm{y}-\overline{\mathrm{y}}=\mathrm{b}_{\mathrm{yx}}(\mathrm{x}-\overline{\mathrm{x}})$

$$
\left(y-\frac{100}{25}\right)=\frac{4}{5}\left(x-\frac{125}{25}\right) \longrightarrow y-4=0.8(x-5) \longrightarrow y=0.8 x
$$

Regression line of y on x is given by, $\mathrm{y}-\overline{\mathrm{y}}=\mathrm{b}_{\mathrm{yx}}(\mathrm{x}-\overline{\mathrm{x}})$

$$
\left(x-\frac{125}{25}\right)=\frac{5}{9}\left(y-\frac{100}{25}\right) \longrightarrow x-5=\frac{5}{9}(y-4) \quad \longrightarrow 9 x=5 y+25
$$

(3)Tof ind the correlation coefficient, $r=\frac{\operatorname{Cov}(x, y)}{\sigma_{x} \sigma_{y}}=\frac{\frac{4}{5}}{1 \times \frac{6}{5}}=\frac{2}{3}$
(4) Value of x when $\mathrm{y}=3$ is given by, $9 \mathrm{x}=5 \times 3+24=39 \longrightarrow \mathbf{X}=\frac{\mathbf{1 3}}{\mathbf{3}}=\mathbf{4 . 3 3}$
(5) Value of y when $\mathrm{y}=13 / 3$ is given by, $\mathrm{y}=0.8 \times 13 / 3 \longrightarrow \mathbf{Y}=\frac{\mathbf{1 0 . 4}}{\mathbf{3}}=\mathbf{3 . 4 6}$

Correlation and Regression

Question No.2: The two regression lines are $x+2 y-5=0$ and $2 x+3 y-8=0$ and variance of y is 12 .
Calculate (1) the means
(2) r (3) y when $x=3(4) x$ when $y=2$
(5) $\sigma_{x}{ }^{2}$
(1) To calculate the means

The means of the variables are obtained by solving the given regression lines

$$
\begin{array}{lll}
x+2 y-5=0 & \text { or } & x+2 y=5 \\
2 x+3 y-8=0 & \text { or } & 2 x+3 y=8
\end{array}
$$

Solving (1) and (2) we get, $\overline{\mathbf{x}}=\mathbf{1}$ and $\overline{\mathbf{y}}=\mathbf{2}$
(2) To find the value of r

$$
\mathrm{r}= \pm \sqrt{\text { byx.bxy }}
$$

First we have to identify the regression lines as follows:

Let the regression line of y on x be, $\mathrm{x}+2 \mathrm{y}-5=0$
Then, $\mathrm{y}=-\frac{1}{2} \mathrm{x}+\frac{5}{2}$, which is of the form $\mathrm{y}=\mathrm{ax}+\mathrm{b}$ where $\mathrm{a}=-\frac{1}{2}$
Let the regression line of x on y be, $2 x+3 y-8=0$
Then, $x=-\frac{3}{2} y+4$, which is of the form $x=c y+d$ where $c=-\frac{3}{2}$

Correlation and Regression

$\therefore a c=\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)=\frac{3}{4}<1$, which indicates that the assumptions are correct byx $=\left(-\frac{1}{2}\right)$ and bxy $=\left(-\frac{3}{2}\right)$
$\therefore r^{2}=b y x . b x y=\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)=\frac{3}{4}$
$\therefore \mathrm{r}=-\left(\frac{\sqrt{3}}{2}\right)$
(3) To find y when $x=3$ (4) x when $y=2$

The regression line of y on x is given by, $y=-\frac{1}{2} x+\frac{5}{2}$
\therefore When $\mathrm{x}=3$, the value of y is given by, $\mathrm{y}=-\frac{1}{2} \cdot 3+\frac{5}{2}=-\frac{3}{2}++\frac{5}{2}=1$
(4) To find x when $y=2$

The regression line of x on y is given by, $x=-\frac{3}{2} y+4$
\therefore When $\mathrm{y}=2$, the value of x is given by, $\mathrm{x}=-\frac{3}{2} \cdot 2+4=-3+4=1$
(5) To find $\sigma_{x}{ }^{2}$ We have byx $=\frac{r \sigma_{y}}{\sigma_{x}} \quad \longrightarrow \sigma_{x}{ }^{2}=\frac{\left(r \sigma_{y}\right)^{2}}{(b y x)^{2}}=\frac{r^{2} \sigma_{y}{ }^{2}}{(b y x)^{2}}=\frac{\frac{3}{4} \cdot 12}{\frac{1}{4}}=\mathbf{3 6}$

Correlation and Regression

Question No.3: The two regression lines are given by the equation $a x+b y+c=0$. Show that the correlation between them is -1 if signs of a and b are alike and +1 if they are different.
Answer: Let the R.L of y on x be $a x+b y+c=0$, which can be put in the form $y=-\left(\frac{a}{b}\right) x-\frac{c}{b}$
Similarly, the R.L of x on y can be given as, $x=-\left(\frac{b}{a}\right) x-\frac{c}{a}$
$\therefore r^{2}=b y x . b x y=\left(-\frac{a}{b}\right)\left(-\frac{b}{a}\right)=1$
$\therefore r= \pm 1$
$r=+1$ iff $\left(-\frac{a}{b}\right)$ and $\left(-\frac{b}{a}\right)$ are both positive which is possible only when a and b have different signs.
$r=-1$ iff $\left(-\frac{a}{b}\right)$ and $\left(-\frac{b}{a}\right)$ are both negative which is possible only when a and b have the same sign.

Correlation and Regression

Question No.4: Calculate the two regression lines from the following data.

X: 24	40	36	45	55	30	50	43	53	44
Y: 50	78	72	100	100	54	116	88	102	90

Answer: From the above data set of $\mathrm{n}=10$ pairs of observations, we can calculate :$\sum \mathrm{X}=420, \quad \sum \mathrm{Y}=850, \quad \sum \mathrm{X}^{2}=18516 \quad \sum \mathrm{Y}^{2}=76388, \quad \sum \mathrm{XY}=37482$ $\bar{x}=\frac{\sum x}{n}=\frac{420}{10}=42, \quad \bar{y}=\frac{\sum y}{n}=\frac{850}{10}=\mathbf{8 5}$
$\operatorname{Cov}(\mathrm{x}, \mathrm{y})=\frac{\sum x y}{n}-\left(\frac{\sum x}{n}\right)\left(\frac{\sum y}{n}\right)=\frac{37482}{10}-\left(\frac{420}{10}\right)\left(\frac{850}{10}\right)=3748.2-42 \times 85=\mathbf{1 7 8 . 2}$
$\sigma_{x}=\sqrt{\frac{\sum x^{2}}{n}-\left(\frac{\sum x}{n}\right)^{2}}=\sqrt{\frac{18516}{10}-\left(\frac{420}{10}\right)^{2}}=\sqrt{1851.6-1764}=\sqrt{87.6}=9.36$
$\sigma_{y}=\sqrt{\frac{\sum y^{2}}{n}-\left(\frac{\sum y}{n}\right)^{2}}=\sqrt{\frac{76388}{10}-\left(\frac{850}{10}\right)^{2}}=\sqrt{7638.8-7225}=\sqrt{413.8}=\mathbf{2 0 . 3 4}$
R.L of \mathbf{y} on \mathbf{x} : $(\mathrm{y}-\bar{y})=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{\mathrm{x}}{ }^{2}}(x-\bar{x})$
R.L of \mathbf{x} on $\mathbf{y}:(x-\bar{x})=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{y}{ }^{2}}(y-\bar{y})$
$(y-85)=\frac{178.2}{87.6}(\mathrm{x}-42)$
$(\mathrm{x}-42)=\frac{178.2}{413.8}(y-85)$
$\mathrm{y}=2.03 \boldsymbol{x}-\mathbf{0 . 4 4}$
$x=0.43 y+5.45$

Correlation and Regression

Rank correlation: Rank correlation is the simple correlation coefficient between the ranks of two sets of observations where each set corresponds to a characteristic. For example, the score given by two judges to n participants in a dance competition. In fact there is no definite scale to measure the dance performance. But the judges give a score out of some total mark say K. In such a situation, we can rank the participants in the order or ranks. The correlation coefficient calculated using the ranks is called rank correlation coefficient.
Rank correlation coefficient is meaningful when the relative positions or ranks of individual objects are more meaningful or reliable or easy to explain than their actual measurements. The rank correlation measures the intensity of correlation between two sets of rankings, each set corresponds to one characteristic.
Spearman's Rank Correlation Coefficient: It is the Karl Pearsons product moment correlation coefficient between the ranks of two sets of observations.
Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots \ldots . .\left(x_{n}, y_{n}\right)$ be the n pairs of observations on two characteristics. For example these pairs can be the score of n participants in two stage programmes say painting and fancy dress.
When we rank the n observations in each of these two sets we get n ranks from 1 to n. Let the rank of $\left(\mathrm{X}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ be $\left(\mathrm{X}_{\mathrm{i}}, Y_{\mathrm{i}}\right)$ where X_{i} and Y_{i} are some numbers from 1 to n .

Correlation and Regression

Spearman's Rank Correlation Coefficient - Contd

Since X_{i} and Y_{i} are some numbers from 1 to n , we get

$$
\begin{aligned}
& \bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}=\frac{1}{n} \cdot \frac{n(n+1)}{2}=\frac{n+1}{2}, \text { Similarly } \bar{Y}=\frac{Y_{1}+Y_{2}+\ldots \ldots . .+Y_{n}}{n}=\frac{1}{n} \cdot \frac{n(n+1)}{2}=\frac{n+1}{2} \\
& \sigma_{X}{ }^{2}=\frac{\sum X_{i}^{2}}{n}-\left(\frac{\sum \mathrm{X}_{\mathrm{i}}}{n}\right)^{2}=\frac{1}{n} \cdot \frac{n(n+1)(2 n+1)}{6}-\left(\frac{1}{n} \cdot \frac{n(n+1)}{2}\right)^{2}=\frac{(n+1)(2 n+1)}{6}-\left(\frac{(n+1)}{2}\right)^{2}=\frac{n^{2}-1}{12} \\
& \sigma_{Y}{ }^{2}=\frac{\sum Y_{i}{ }^{2}}{n}-\left(\frac{\sum \mathrm{Y}_{\mathrm{i}}}{n}\right)^{2}=\frac{1}{n} \cdot \frac{n(n+1)(2 n+1)}{6}-\left(\frac{1}{n} \cdot \frac{n(n+1)}{2}\right)^{2}=\frac{(n+1)(2 n+1)}{6}-\left(\frac{(n+1)}{2}\right)^{2}=\frac{n^{2}-1}{12} \\
& \text { Let } d_{i}=\left(\mathrm{X}_{\mathrm{i}}-\mathrm{Y}_{\mathrm{i}}\right)=\left[\left\{\mathrm{X}_{\mathrm{i}}-\frac{n+1}{2}\right\}-\left\{\mathrm{Y}_{\mathrm{i}}-\frac{n+1}{2}\right\}\right]=\left[\left\{\mathrm{X}_{\mathrm{i}}-\bar{X}\right\}-\left\{\mathrm{Y}_{\mathrm{i}}-\bar{Y}\right\}\right] \\
& \begin{aligned}
\sum \boldsymbol{d}_{i}{ }^{2} & =\sum\left[\left\{X_{\mathrm{i}}-\bar{X}\right\}-\left\{\mathrm{Y}_{\mathrm{i}}-\bar{Y}\right\}\right]^{2}
\end{aligned} \\
& \quad=\sum\left(\mathrm{X}_{\mathrm{i}}-\bar{X}\right)^{2}+\sum\left(Y_{\mathrm{i}}-\bar{Y}\right)^{2}-2 \sum\left(\mathrm{X}_{\mathrm{i}}-\bar{X}\right)\left(\mathrm{Y}_{\mathrm{i}}-\bar{Y}\right) \\
& \quad=\mathrm{n} \sigma_{X}{ }^{2}+\mathrm{n} \sigma_{Y}{ }^{2}-2 \mathrm{n} \operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\mathrm{n} \sigma_{X}{ }^{2}+\mathrm{n} \sigma_{Y}{ }^{2}-2 \mathrm{nr} \sigma_{X} \sigma_{Y}
\end{aligned}
$$

$$
=\mathrm{n}\left(\frac{n^{2}-1}{12}\right)+\mathrm{n}\left(\frac{n^{2}-1}{12}\right)-\mathrm{n} 2 \mathrm{r} \sqrt{\left(\frac{n^{2}-1}{12}\right)} \sqrt{\left(\frac{n^{2}-1}{12}\right)}=\mathrm{n}\left(\frac{n^{2}-1}{6}\right)(1-\mathrm{r})
$$

$$
\therefore 1-r=\frac{6 \sum d_{i}^{2}}{n\left(n^{2}-1\right)} \quad \longrightarrow \mathbf{r}=\mathbf{1}-\frac{6 \sum \boldsymbol{d}_{\boldsymbol{i}}{ }^{2}}{n\left(\boldsymbol{n}^{2}-1\right)}
$$

Correlation and Regression

Rank Correlation Coefficient when there are repeated ranks

Rank Correlation coefficient is calculated using the formula, $\mathbf{r}=\mathbf{1}-\frac{\mathbf{6} \sum \boldsymbol{d}_{\boldsymbol{i}}{ }^{2}}{\boldsymbol{n (n ^ { 2 } - 1)}}$.
While deriving the above formula, it was assumed that no two individuals have the same value in either of the group. If there are repeated observations, all of them are assigned the same rank which is the average of the ranks which they would have been assigned if they were different. (Eg,. After the largest and second largest observations, let there be three repeated observations. If these three were different they would be given the ranks 3, 4 and 5 . Average of these ranks is 4 and all the three observations are given the rank 4). When there are repeated ranks a correction factor is used for calculating the Spearman's rank correlation coefficient.

The formula for calculating the Spearman's rank correlation coefficient is given by,
$\mathrm{r}=1-\frac{\mathbf{6} \sum{d_{i}}^{2}+\frac{1}{12}\left\{\left(m_{1}{ }^{3}-m_{1}\right)+\left(\boldsymbol{m}_{2}{ }^{3}-m_{2}\right)+\left(m_{3}{ }^{3}-m_{3}\right)+\ldots \ldots \ldots \ldots \ldots \ldots\right\}}{n\left(n^{2}-1\right)}$, where m_{i} is the number of times a particular rank is repeated.

Correlation and Regression

Calculate the Rank Correlation Coefficient from the following data of marks obtained by 8 students in Mathematics and Physiscs

Physics:	15	20	27	13	45	60	20	75
Mathematics:	50	30	55	30	25	10	30	70

Answer: $\mathrm{r}=1-\frac{6 \sum{d_{i}}^{2}+\frac{1}{12}\left\{\left(m_{1}{ }^{3}-m_{1}\right)+\left(m_{2}{ }^{3}-m_{2}\right)+\left(m_{3}{ }^{3}-m_{3}\right)+\ldots \ldots \ldots \ldots \ldots\right.}{n\left(n^{2}-1\right)}$
Note: Two students have got equal marks (20) for physics. If mark of these two students were slightly different, they would have got theRanks 5 and 6 . So they were given the rank 5.5.
3 students got equal marks (30) in Mathematics.
All of them are given the average of ranks 4,5,6. Which is same as 5 .
There fore m takes two values 2 and 3 .

$$
\begin{aligned}
\mathrm{r} & =1-\frac{6 \sum{d_{i}}^{2}+\frac{1}{12}\left\{\left(m_{1}^{3}-m_{1}\right)+\left(m_{2}^{3}-m_{2}\right)\right\}}{n\left(n^{2}-1\right)} \\
& =1-\frac{6 \times 81.5+\frac{1}{12}\left\{\left(2^{3}-2\right)+\left(3^{3}-3\right)\right\}}{8\left(8^{2}-1\right)}=0.02
\end{aligned}
$$

Marks in Physics	Marks in Maths	Rank in Physics (X)	Rank in Maths (Y)	$d=x-y$	d^{2}
15	50	7	3	4	16
20	30	5.5	5	.5	.25
27	55	4	2	2	4
13	30	8	5	3	9
45	25	3	7	-4	16
60	10	2	8	-6	36
20	30	5.5	5	.5	.25
75	70	1	1	0	0
					81.5

