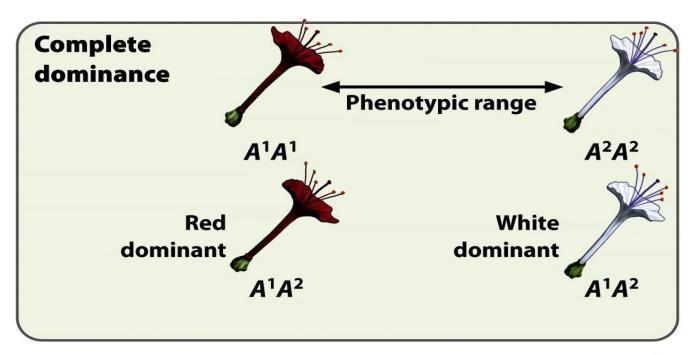
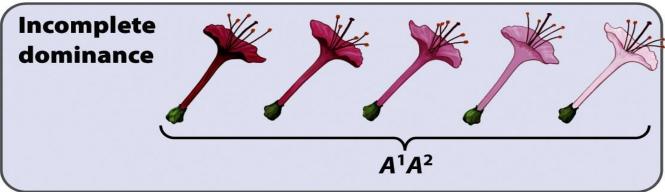
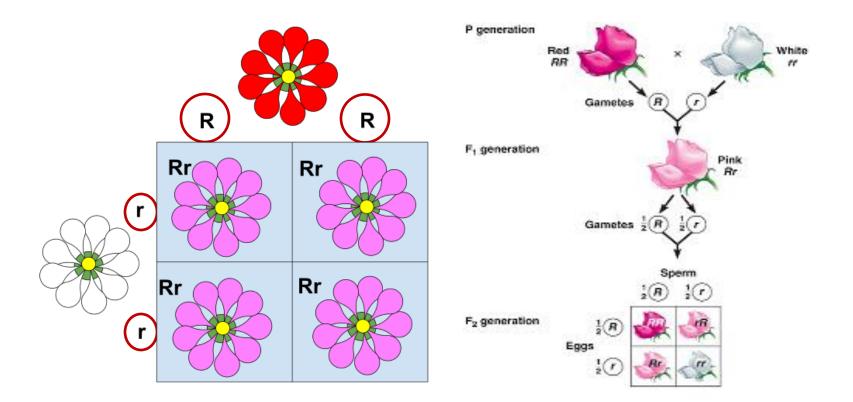
Gene Interactions

Presented by Dr. (Fr.) Jose John

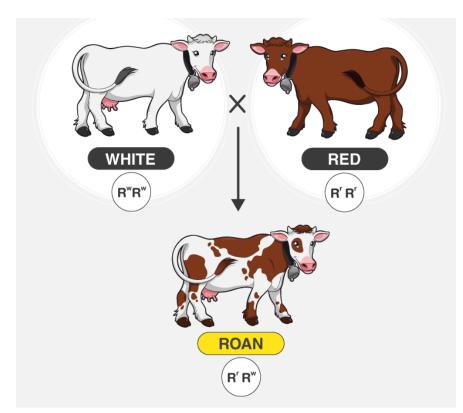

POST GRADUATE AND RESEARCH DEPARTMENT OF BOTANY SACRED HEART COLLEGE, THEVARA


Gene Interactions

Intra-genic --- Dominance Incomplete Dominance Co-dominance


Inter-genic — Epistasis

Dominance



Incomplete Dominance

Incomplete dominance: Neither allele masks the other and both are observed as <u>a blending</u> in the heterozygote.

Co-dominance

Codominance: Neither allele masks the other so that effects of both alleles are observed in heterozygote without blending

Dominance, Incomplete Dominance and Co-dominance

Type of Dominance	Definition
Dominance	Phenotype of the heterozygote is the same as the phenotype of one of the homozygotes.
Incomplete dominance	Phenotype of the heterozygote is intermediate (falls within the range) between the phenotypes of the two homozygotes.
Codominance	Phenotype of the heterozygote includes the phenotypes of both homozygotes.

Epistasis - Definition

- Epistasis is a form of gene interaction in which one gene <u>masks</u> the phenotypic expression of another.
- There are <u>no new phenotypes produced</u> by this type of gene interaction.

Epistatic versus Hypostatic

- The alleles that are masking the effect are called **epistatic alleles**
- The alleles whose effect is being masked are called the hypostatic alleles

Recessive or Dominant?

- Epistasis can be described as either recessive epistasis or dominant epistasis.
- Let's look at an example of recessive epistasis....

 Fur color in Labrador Retrievers is controlled by two separate genes.

• Fur color is a polygenic trait!

Gene 1: Represented by B : Controls color

Gene 2: Represented by E : Controls expression of B

Labrador Retrievers

 If a Labrador retriever has a **dominant B allele**, they will have black fur.

If they have two
recessive alleles (bb)
they will have brown fur.

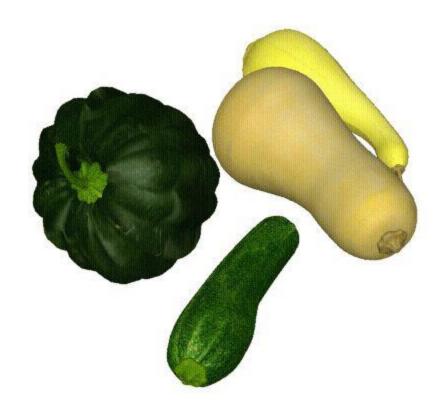
Labrador Retrievers

- If a retriever receives at least one dominant "E" allele, they will remain the color that the "B" allele coded for.
 - Either black of brown
- However, if a dog receives a pair of homozygous recessive "e" alleles, they will be golden regardless of their "B" alleles!

Labrador Retrievers

BBEE and BbEe
bbEE and bbEe
BBee, Bbee, or bbee
BBee = Golden retrievers

Dominant Epistasis


 Summer Squash fruit color is controlled by two genes.

Gene 1 - represented by W Gene 2 - represented by G

Summer Squash Fruit Color

 Genotypes and Phenotypes:

W-/G-	white
W-/gg	white
ww/G-	green
ww/gg	yellow

Summer Squash Fruit Color

Which allele is epistatic in squash color?
The dominant W allele is epistasis

 How do you know?
Because every time a dominant W allele shows up in a squash genotype, the squash fruit color is white.

Difference between Dominance and Epistasis

Dominance	Epistasis
Involves intra-allelic gene interaction.	Involves inter-allelic gene interaction.

□One allele hides the □One gene hides the effect of other allele at effect of other gene at the same gene pair. □One gene hides the other gene at different gene loci.

Assignment 1 - try this cross...

 You have decided to cross your golden retriever (bbee) with the neighbor's chocolate retriever (bbEe).

What color pups will they have...

Assignment 2 - try this cross...

Cross a green squash (wwGg) with a white squash (Wwgg).

What color are the offsprings...