Quantum Mechanics




Course Outline

The course will examine the fundamental ideas as a series of
postulates of quantum mechanics and apply these to some
simple systems such as particle in a box, particle on a ring,
rigid rotor, one-dimensional simple harmonic oscillator and to
the simplest chemical system-hydrogen atom. This also would
attempt to predict and compare the results with spectral
properties of different systems.



Particle on a ring
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Spherical Co-ordinate System
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This quantity is the volume of a spherical shell of radius r and thickness dr
The factor 47772 represents the surface area of the spherical shell and dr is its thickness.




Spherical Co-ordinate System
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Particle on a ring

m =0, £1, £2, £3, .
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Particle on a ring
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Angular Momentum
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The basic ideas of the vector representation of angular momentum: the
magnitude of the angular momentum is represented by the length of
the vector, and the orientation of the motion in space by the orientation
of the vector (using the right-hand screw rule).



Angular Momentum Components
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Since the rotation of particle on a ring is confined to the x-y
plane, the only nonzero component of the angular
momentum of the particle is along the z-axis



Angular Momentum of particle on a ring is
quantised

A Since the circumference of the circular path has to be equal to
an integral number of wavelengths, we can write:

2nr = mA

where the wavelength is taken to be negative when the particle is
moving in a clockwise direction. When this equation is combined
with the de Broglie relation, p = A/A, the following expression is
obtained for the magnitude of the linear momentum at any instant:

mh
pe=a—
2nr

L is equal to mvr, and so to pr. Hence:

L=ﬁ}i=m,h
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Since the rotation is confined to the x-y plane, the only
nonzero component of the angular momentum of the particle
is along the z-axis

E,_:—”J.i l:z =-h— j—- .
2 dop i\ dg

The angular momentum expectation value, is determined as
follows:
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Particle on a sphere-Energy
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Because the energy is independent of the value of m,, there will be 2/
+ 1 states with the same energy, and the energy level is said to be (2/ +
1)-fold degenerate




Particle on a sphere-Energy
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Particle on a sphere-Wave function

Spherical Harmonics

The product of the normalized associated Legendre polynomials
along with the Particle-on-a-Ring functions are known as the
spherical harmonics
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for m<Q0 the factor (—1)™ is omitted
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The First Few Associated Legendre Functions P J'" (x) The First Few Spherical Harmonics, Y7'(6, ¢) *
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Quantum numbers 0P Sign of real part of
! m; (normalization wavefunction on
constant omitted)  surface of sphere
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Polar Plots of spherical Harmonics
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Angular Momentum-Particle on a sphere

When the particle is confined to rotate in only two-
dimensions (i.e. confined to rotate on a ring), the angular
momentum is parallel to the z-axis and is fully determined
by the value of m,

In three-dimensional rotation, the angular momentum need

not be parallel to the z-axis and may also have components
in the x and y-axes.



Angular Momentum Components
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Spherical Harmonic wave functions are eigen functions of
the square of the angular momentum

The square of the angular momentum, L?, can be found from the angular
momentum component operators. The square of the angular momentum is a
scalar quantity as it represents the dot productof L- L.
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Spherical Harmonic wave functions are eigen functions of L,
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Commutation Relationships
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Orientations of L with respect to Z axis for 1 =1
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Orientations of L with respect to Z axis for 1 =2
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Schrodinger’s Solution to the Hydrogen
Atom Problem

z
| | |

EE— + e
7 Me mp

o I
N
M el
= i
Me + mp
x ¢

Me + Mp = Mp and 1 = me




Schrodinger’s Solution to the Hydrogen
Atom Problem
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Schrodinger’s Solution to the Hydrogen
Atom Problem CD
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Schrodinger’s Solution to the Hydrogen e
Atom Problem | o
The First Few Legendre Polynomials *
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The First Few Associated Legendre Functions P, ' (x)
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Angular part of the wave function
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Radjial part of the wave function
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The R equation can be solved as follows:

1. Assume that £ is negative (this restricts us to bound states), and note that g =I{/ + 1)

rn

from the previous solving of the ®& equation.

. Change variables for mathematical convenience.

. Find the asymptotic solution pertaining to the large » limit, where the R equation

becomes simplified.

. Express the wavefunction as a product of the asymptotic solution and an unknown

function. Express this unknown function as a power series and (after dealing with
some singularities) obtain a recursion relation.

. Note that the power series overpowers the asymptotic part of the solution unless the

series is truncated. This leads to the requirement that n be an integer and hence that
E be quantized. It also requires that n = /.

. Recognize the truncated series to be associated Laguerre polynomials times p',

where p is defined below.



Radjial part of the wave function
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The Hydrogen-like Radial Wave Functions, R, ;(r ), for
n=1 2and 3"
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The energy levels of H-atom
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The energy levels of hydrogenic systems depend on the principal guantum
number ‘n’. In hydrogenic atoms, all orbitals of a given shell have the same
energy. In multi-electron systems, E depends on (n+ | )values



The energy levels of H-like system in the presence
and absence of a magnetic field
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Wave function(‘P)

To visualize orbitals. useful to separate variables:

¥(r, 0, 9) = R(r)OO)D()

R, ¢ Radial function

R?: Probability of e~ at r from nucleus (in all directions)

®O)D0@) =Y Angular function

[, mig

(Spherical Harmonic)

Y?: Probability of e~ at (8. ¢) from nucleus (out to nfinity)



Radial Plots of the 1s Orbital

Radial Plots of the 2s Orbital
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Graphical representation of radial wave function

Radial plots:- R , | Is maximum at the nucleus. It can have +ve and —ve
values. It becomes O at r =0 for | > 0. It increases with #’and tends to attain
zero as 7 ’'tends to infinity.

Probability density plots:- A plot of R?, |, against 7’ represents the
probability of finding electron(radial probability density). But R%, jat 7’ is
equal to zero which is not true.

Radial probability distribution plots: This gives the probability of finding
electron in a spherical shell of thickness ‘dr’surrounding the nucleus.

Radial probability = R2, ,dV = 4zr2 dr -




Radial Plots of the 2p Orbital

Radial Plots of the 3p Orbital
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Nodes Size of orbitals
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The points at which the radial R
probability is zero are called nodes




0.6
OS'Q 0.2 2s
0.4 0.1k
ls ' [
0.1 3[7
0.3H 0 | | |
0 | | | |
0.2 0.2
2 -
0.14 0.1 P G 3d
0 0 ' ' 0 - ! | .
0 5 0 5 10 15 0 5 10 15 20 25

The probability densities %[ R,,;(r)]? associated with the radial parts of the hydrogen atomic
wave functions.




Angular wave functions and shapes of orbitals
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It is usual to depict the real and imaginary components, and to call these
orbitals p, and p,:
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