# COURSE TITLE : PHYSICAL CHEMISTRY PRACTICALS COURSE CODE : 15U6PRCHE06

# **SESSION 2** : Potentiometric Titrations

### **POTENTIOMETRIC TITRATIONS**

- Potentiometric titration is quantitative analysis used to estimate the concentration of a given analyte solution.
- Potentiometric titration involves the continuous addition of a titrant to an analyte solution and measuring the EMF of the cell.
- The equivalence point of the titration reaction will be indicated by the sudden change in the potential.
- The potential of an electrode varies with ion concentration in accordance with Nernst equation:

$$E = E^0 + \frac{2.303RT}{nF} \log C$$

*E* is the electrode potential at the concentration *C* 

### <u>KMnO<sub>4</sub> Vs Fe<sup>2+</sup> soln</u>

### AIM:

To determine the strength of a given ferrous ion solution by potentiometric titration with the given  $KMnO_4$  solution.

# **PRINCIPLE**

The redox reaction for the KMnO<sub>4</sub> vs Fe<sup>2+</sup> titration:

 $MnO_4^- + 8 H^+ + 5 Fe^{2+} \rightarrow Mn^{2+} + 5 Fe^{3+} + 8 H_2O$ 

A platinum electrode - ferrous salt solution - calomel electrode

**Calomel || KCl || Fe<sup>3+</sup>, Fe<sup>2+</sup> | Pt** 





#### **Reference electrode – Calomel electrode**

The potential acquired by the indicator electrode:

$$E = E^{0} + \frac{0.0591}{n} \ln \frac{\left[Fe^{3+}\right]}{\left[Fe^{2+}\right]}$$

- The EMF of the cell depends on the ratio  $[Fe^{3+}]/[Fe^{2+}]$ .
- In the beginning, the potential depends on the concentration of  $Fe^{2+}$  state.
- After the equivalence point, the potential depends on the concentration of  $Fe^{3+}$  state.
- The potential shows a sharp increase at the equivalence point.

### **MATERIALS REQUIRED:**

1. Potentiometer, Platinum and Calomel electrodes



- 2. 0.1 N KMnO<sub>4</sub>
- 3. Unknown Ferrous ion solution
- 4. 4N Sulphuric acid
- 5. Burette
- 6. Pipette -10 mL
- 7. Standard Flasks 100 mL (2 Nos)

### **PROCEDURE:**

□ The unknown Ferrous ion solution is made upto 100 mL

 $\Box$  The titrant (0.1 N KMnO<sub>4</sub> solution) is filled in the burette.

Dipette out 20 mL of unknown Ferrous ion solution into a 250 mL beaker.

□ Add 40 mL of 6N sulphuric acid to the ferrous ions solution.

Dip the platinum and calomel electrodes in the solution and connected to the potentiometer.

□ Record the EMF of the solution.

 $\Box$  Add 1 mL of 0.1 N KMnO<sub>4</sub> solution from the burette, stir the solution and note the EMF.

□ The addition of titrant is repeated in amounts of 1 mL and the EMF is measured each time.

| Volume of KMnO <sub>4</sub><br>(V) added<br>(in mL) | EMF (E)<br>(in Volts) | ΔE | $\frac{\Delta E}{\Delta V}$ |
|-----------------------------------------------------|-----------------------|----|-----------------------------|
| 0                                                   | 330                   | -  | -                           |
| 1                                                   | 350                   | 20 | 20                          |
| 2                                                   | 360                   | 10 | 10                          |
| 3                                                   | 380                   | 20 | 20                          |
| 4                                                   |                       |    |                             |
| 5                                                   |                       |    |                             |
| 6                                                   |                       |    |                             |
| 7                                                   |                       |    |                             |
| 8                                                   |                       |    |                             |
| 9                                                   |                       |    |                             |

 $\frac{\Delta E}{\Delta V}$ 

### **GRAPH**





### CALCULATION

Volume of unknown Ferrous ion soln  $(V_1) = 20 \text{ mL}$ 

Strength of  $KMnO_4 \operatorname{soln}(N_2) = 0.1 \text{ N}$ 

Volume of unknown Ferrous ion soln  $(V_2) = -----mL$  (determined from graph)

Normality of Fe<sup>2+</sup> solution (N<sub>1</sub>) =  $\frac{N_2 \times V_2}{V_1} = \frac{0.1 \times V_2}{20}$ 

### **RESULT:**

The strength of the given  $Fe^{2+}$  solution is .....N.