

PRESSURE OF AN IDEAL GAS - THE KINETIC GAS EQUATION

The pressure of a gas is due to the elastic collisions of the gas molecules on the walls of the container

Consider N molecules of a gas - each of mass ' m ', enclosed within a cube of edge length 'I'.

Consider a single molecule with mass ' m ' and velocity ' c '.

The velocity is resolved into three components cx, $c y$ and $c z$ along the x, y and z axes

$$
c^{2}=c_{x}^{2}+c_{y}^{2}+c_{z}^{2}
$$

Consider the motion in the x-direction towards face A of the cube. The molecule will strike the face A with momentum $m c_{x}$.
it will rebound with a momentum $-m c_{x}$
Change in momentum $=m c_{x}-\left(-m c_{x}\right)=2 m c_{x}$

Velocity of the molecule is $c_{x} \mathrm{~m} / \mathrm{s}$.

The distance travelled by the molecule in 1 second $=c_{x}$
The distance travelled by the molecule for colliding with face $\mathrm{A}=21$
Number of collisions on face A by the molecule in 1 second $=\frac{c_{x}}{2 l}$

Change in momentum of a molecule per second $=2 m c_{x} \times \frac{c_{x}}{2 l}=\frac{m c_{x}^{2}}{l}$
Total change in momentum per second due to the impact on the two opposite faces along x-axis $=\frac{2 m c_{x}{ }^{2}}{l}$

The total change in momentum per molecule per second $=\frac{2 m c_{x}{ }^{2}}{l}+\frac{2 m c_{y}{ }^{2}}{l}+\frac{2 m c_{z}{ }^{2}}{l}$

$$
=\frac{2 m c^{2}}{l}
$$

Let the individual velocities of molecules 1 to N be respectively $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}$ \qquad to CN .

The total change in momentum per second of N molecules $=\frac{2 m c_{1}{ }^{2}}{l}+\frac{2 m c_{2}{ }^{2}}{l}+\ldots \ldots \ldots . .+\frac{2 m c_{N}{ }^{2}}{l}$

$$
=\frac{2 m}{l}\left(c_{1}^{2}+c_{2}^{2}+\ldots \ldots \ldots . c_{N}^{2}\right)
$$

$$
=\frac{2 m N}{l}\left(\frac{c_{1}^{2}+c_{2}^{2}+\ldots \ldots \ldots . c_{N}^{2}}{N}\right)
$$

$$
=\frac{2 m N u^{2}}{l}
$$

$$
u^{2}=\left(\frac{c_{1}^{2}+c_{2}^{2}+\ldots \ldots \ldots . c_{N}^{2}}{N}\right) \text { is Mean Square Velocity }
$$

\boldsymbol{u} is known as the Root Mean Square (RMS) Velocity

The total change in momentum per second is equivalent to the force, f .

$$
\mathrm{f}=\frac{2 m N u^{2}}{l}
$$

$$
P=\frac{\text { force }}{\text { area }}=\frac{f}{A}
$$

$$
P=\frac{\text { force }}{\text { area }}=\frac{2 m N u^{2}}{l \times A}
$$

$$
A=6 l^{2}
$$

$$
P=\frac{2 m N u^{2}}{l \times 6 l^{2}}=\frac{m N u^{2}}{3 l^{3}}
$$

$$
V=l^{3}
$$

$$
P=\frac{1}{3 V} m N u^{2}
$$

$$
P V=\frac{1}{3} m N u^{2}
$$

