HEAT CAPACITY OF GASES

Suppose ' q ' represents the quantity of heat required to raise the temperature of a system from T_{1} to T_{2}.

$$
\begin{aligned}
& q \propto\left(T_{2}-T_{1}\right) \quad q \propto \Delta T \\
& q=C . \Delta T
\end{aligned}
$$

$$
C=\frac{q}{\Delta T}
$$

The heat capacity of a system is defined as the quantity of heat required to raise the temperature of the system by $1{ }^{0} \mathrm{C}$ (or 1 K).

Specific Heat Capacity (s):

The quantity of heat required to raise the temperature of 1 g of the substance by $1^{0} \mathrm{C}$ (or 1 K).

$$
s=\frac{C}{m} \quad s=\frac{q}{m \cdot \Delta T}
$$

Molar Heat Capacity ($\mathbf{C m}_{\mathrm{m}}$):

The quantity of heat required to raise the temperature of 1 mole of the substance by $1{ }^{0} \mathrm{C}$ (or 1 K).

$$
C_{m}=\frac{C}{n} \quad C_{m}=\frac{q}{n \cdot \Delta T}
$$

Two types of molar heat capacities are considered. Molar heat capacity at constant volume ($\mathrm{C}_{\mathrm{V}, \mathrm{m}}$ or C_{V}) and Molar heat capacity at constant pressure ($\mathrm{C}_{\mathrm{P}, \mathrm{m}}$ or C_{P}).

Molar heat capacity at constant volume (Cv, m or Cv):

The quantity of heat required to raise the temperature of 1 mole of the substance by $1{ }^{0} \mathrm{C}$ (or 1 K) at constant volume. At constant volume, the heat supplied goes exclusively to increase the kinetic energy.

Kinetic energy of 1 mole of gas at temperature $\mathrm{T} \mathrm{K}=3 / 2 R T$
Kinetic energy of 1 mole of gas at temperature ($\mathrm{T}+1) \mathrm{K} \quad=3 / 2 R(T+1)$
Increase in Kinetic energy for 1 K rise in temperature $\quad=3 / 2 R(T+1)-3 / 2 R T=3 / 2 R$
Since, the heat supplied goes exclusively to increase the kinetic energy, the heat capacity is given by:
$C_{V}=\frac{q}{\Delta T}$
$C_{V}=\frac{3 / 2 R}{(T+1)-T}$
$C_{V}=3 / 2 R$

Molar heat capacity at constant pressure ($\mathbf{C p , m}$ or C_{P}):

The quantity of heat required to raise the temperature of 1 mole of the substance by $1^{0} \mathrm{C}$ (or 1 K) at constant pressure. At constant pressure, the heat supplied goes to increase the kinetic energy as well as to perform the mechanical work of expansion.

Expansion work involved at constant pressure P by one mole of gas on heating through 1 K when its volume changes form V to $\mathrm{V}+\Delta \mathrm{V}=\mathrm{P} \Delta \mathrm{V}$

For an ideal gas, $\mathrm{PV}=\mathrm{RT} \quad$ at temperature T K
At temperature $\mathrm{T}+1 \mathrm{~K}$, the change in volume is $\mathrm{V}+\Delta \mathrm{V}$
Hence, $\mathrm{P}(\mathrm{V}+\Delta \mathrm{V})=\mathrm{R}(\mathrm{T}+1)$
$\mathrm{P} \Delta \mathrm{V}=\mathrm{R}$

The heat supplied goes to increase the kinetic energy as well as to perform the mechanical work of expansion.

$$
\begin{aligned}
& q=3 / 2 R+P \Delta V \\
& q=3 / 2 R+R=5 / 2 R
\end{aligned}
$$

$$
\begin{aligned}
& C_{P}=\frac{q}{\Delta T} \\
& C_{P}=\frac{5 / 2 R}{(T+1)-T}
\end{aligned} C_{P}=5 / 2 R
$$

$\mathrm{C}_{\mathrm{p}} \& \mathrm{C}_{\mathrm{v}}$ Relations:

$$
C_{P}-C_{V}=5 / 2 R-3 / 2 R
$$

Or, $\quad C_{P}-C_{V}=R$
The ratio of heat capacities is given by:
$\frac{C_{P}}{C_{V}}=\gamma=\frac{5 / 2 R}{3 / 2 R}=\frac{5}{3}$
Or, $\quad \frac{C_{P}}{C_{V}}=\gamma=1.667$

- The above conclusions are applicable only to ideal monoatomic gases, which possess only translational kinetic energy.
- Polyatomic molecules possess rotational and vibrational energies other than translational energy, hence their heat capacity also increases with increase in temperature.

