HEAT CAPACITY OF GASES

Suppose 'q' represents the quantity of heat required to raise the temperature of a system from T_1 to T_2 .

 $q \propto (T_2 - T_1) \qquad q \propto \Delta T$ $q = C \Delta T$

The heat capacity of a system is defined as the quantity of heat required to raise the temperature of the system by $1 \, {}^{0}$ C (or 1 K).

Specific Heat Capacity (s):

The quantity of heat required to raise the temperature of 1g of the substance by 1 ⁰C (or 1 K).

$$s = \frac{C}{m}$$
 $s = \frac{q}{m.\Delta T}$

Molar Heat Capacity (Cm):

The quantity of heat required to raise the temperature of 1 mole of the substance by $1 \, {}^{0}C$ (or 1 K).

$$C_m = \frac{C}{n}$$
 $C_m = \frac{q}{n.\Delta T}$

Two types of molar heat capacities are considered. Molar heat capacity at constant volume ($C_{V,m}$ or C_V) and Molar heat capacity at constant pressure ($C_{P,m}$ or C_P).

Molar heat capacity at constant volume (Cv,m or Cv):

The quantity of heat required to raise the temperature of 1 mole of the substance by 1 ⁰C (or 1 K) at constant volume. At constant volume, the heat supplied goes exclusively to increase the kinetic energy.

Kinetic energy of 1 mole of gas at temperature T K = $\frac{3}{2}RT$

Kinetic energy of 1 mole of gas at temperature (T+1) K = $\frac{3}{2}R(T+1)$

Increase in Kinetic energy for 1 K rise in temperature

$$=\frac{3}{2}R(T+1)-\frac{3}{2}RT=\frac{3}{2}R$$

Since, the heat supplied goes exclusively to increase the kinetic energy, the heat capacity is given by:

 $C_V = \frac{q}{\Lambda T}$

$$C_{V} = \frac{\frac{3}{2}R}{(T+1)-T} \qquad C_{V} = \frac{3}{2}R$$

The quantity of heat required to raise the temperature of 1 mole of the substance by $1 \, {}^{0}C$ (or 1 K) at constant pressure. At constant pressure, the heat supplied goes to increase the kinetic energy as well as to perform the mechanical work of expansion.

Expansion work involved at constant pressure P by one mole of gas on heating through 1 K when its volume changes form V to $V+\Delta V = P\Delta V$

For an ideal gas, PV = RT at temperature T K

At temperature T+1 K, the change in volume is V+ Δ V

Hence, $P(V+\Delta V) = R(T+1)$

 $P\Delta V = R$

The heat supplied goes to increase the kinetic energy as well as to perform the mechanical work of expansion.

$$\therefore \quad \frac{q = \frac{3}{2}R + P\Delta V}{q = \frac{3}{2}R + R} = \frac{5}{2}R$$

$$C_P = \frac{q}{\Delta T}$$

$$C_{P} = \frac{\frac{5}{2}R}{(T+1)-T} \qquad C_{P} = \frac{5}{2}R$$

C_p & C_v Relations:

$$C_P - C_V = \frac{5}{2}R - \frac{3}{2}R$$

 $Or, \qquad C_P - C_V = R$

The ratio of heat capacities is given by:

 $\frac{C_P}{C_V} = \gamma = \frac{\frac{5}{2}R}{\frac{3}{2}R} = \frac{5}{3}$

Or,
$$\frac{C_P}{C_V} = \gamma = 1.667$$

- The above conclusions are applicable only to ideal monoatomic gases, which possess only translational kinetic energy.
- Polyatomic molecules possess rotational and vibrational energies other than translational energy, hence their heat capacity also increases with increase in temperature.