

GAS LAWS

- Gas laws describe the relationship between different gas parameters (T, V, P and n).
- Describe the general behaviour of gases.
- The volume of a given sample of gas depends on the temperature and pressure applied to it.
- Change in temperature or pressure will affect the volume of the gas

BOYLE'S LAW

STATEMENT :

The pressure of a given mass of a gas is inversely proportional to its volume at a constant temperature.

MATHEMATICAL FORM : $P \propto \frac{1}{V}$

$\mathrm{PV}=K$
ROBERT BOYLE
IRISH CHEMIST
where K is a constant and its value depends on amount of a gas and the temperature.
Considering two conditions of pressure and volume $\left(\mathrm{P}_{1}, \mathrm{~V}_{1}\right)$ and volume $\left(\mathrm{P}_{2}, \mathrm{~V}_{2}\right)$.
Then

$$
P_{1} \times V_{1}=P_{2} \times V_{2}
$$

CONDITION 1

$$
\begin{gathered}
P=1 \operatorname{atm} \quad V=4 L \\
T=300 K
\end{gathered}
$$

CONDITION 2

$$
\begin{gathered}
\mathrm{P}=2 \mathrm{~atm} \mathrm{~V}=2 \mathrm{~L} \\
\mathrm{~T}=300 \mathrm{~K}
\end{gathered}
$$

As P increases, V decreases. T and n remained constant

Graphical Representation of Boyle's Law

Graphical curves at constant temperature are known as isotherms.

Isotherms at Different Temperatures

CHARLES' LAW

- Charles Law relates the \mathbf{V} and \mathbf{T} of a given mass of a gas at constant pressure.
- Charles law states that 'At constant pressure, the volume of a given mass of a gas increases or decreases by $1 / 273.15$ of its volume at $0^{\circ} \mathrm{C}$ for every one degree rise or fall in temperature'.
- Let V_{0}, V_{t} are the volumes of gas at $0{ }^{\circ} \mathrm{C}$ and $t{ }^{\circ} \mathrm{C}$. Then according to

JACQUES CHARLES
FRENCH SCIENTIST Charles law:

$$
V_{t}=V_{0}+\frac{V_{0}}{273.15} \times t{ }^{0} C \quad V_{t}=V_{0}\left(\frac{t^{0} C+273.15}{273.15}\right)
$$

At absolute zero or $-273^{\circ} \mathrm{C}$, all molecular motions would stop and the volume of the gas would become zero.

$$
T(\text { in K })=t{ }^{\circ} \mathrm{C}+273.15 \quad T_{0}=273.15^{\circ} \mathrm{C}
$$

Then $\quad V_{t}=V_{0}\left(\frac{t^{0} C+273.15}{273.15}\right) \quad$ becomes $\quad V_{t}=V_{0}\left(\frac{T}{T_{0}}\right)$
$\frac{V_{t}}{V_{0}}=\frac{T}{T_{0}}$
$V \times T=K$, a constant
$V \infty T$
"at constant pressure, the volume of a given amount of a gas directly proportional to its absolute temperature".

VERIFICATION OF CHARLES LAW

ISOBARS - Constant pressure lines in V-T graph

GAY LUSSAC'S LAW

- Gay Lussac's law relates the pressure and absolute temperature of a given mass of a gas at constant volume.
- It is stated as "at constant Volume, the pressure of given mass of a gas is directly proportional to absolute temperature".

JOSEPH GAY-LUSSAC
$\mathrm{P} \propto \mathrm{T} \quad$ at constant V
$\frac{P}{T}=K$, a constant
$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$

AVOGRADRO'S LAW

"Equal volumes of different gases at the same temperature and pressure contain the same number of molecules."

	He		
Volume	22.4 L	22.4 L	22.4 L
Pressure	1 atm	1 atm	1 atm
Temperature	$0^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$
Mass of gas	4.00 g	28.0 g	16.0 g
Number of gas molecules	6.02×10^{23}	6.02×10^{23}	6.02×10^{23}

AMEDEO AVOGADRO ITALIAN SCIENTIST

V $\propto \mathrm{n} \quad$ (at constant T and $P)$
or $\quad \mathrm{V}=\mathrm{Kn} \quad$ (where K is constant)
or $\quad \mathrm{V}_{1} / \mathrm{n}_{1}=\mathrm{V}_{2} / \mathrm{n}_{2}=\ldots \ldots . .=\mathrm{K}$
1 mole of gas at 273 K and 1 atmosphere pressure occupies
22.4 Litres - The Molar Volume

IDEAL GAS EQUATION

Boyle's law, Charles law and Avogadro's law can be combined as:
According to Boyle's law,
According to Charle's law, $\quad V \propto T \quad$ at constant $P \& n$.
According to Avogadro's law, $\mathrm{V} \propto \mathrm{n}$ at constant $\mathrm{T} \& \mathrm{P}$
By combining the three laws we get, $\mathrm{V} \propto \mathrm{nT} / \mathrm{P}$

$$
V=R \times \frac{n T}{P}
$$

PV = n RT

Value of universal gas constant R

$$
\begin{aligned}
& \mathrm{PV}=\mathrm{RT} \text { for } 1 \text { mole of a gas } \mathrm{R}=\mathrm{PVT} \\
& \mathrm{R}=8.314 \mathrm{Nm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =8.314 \times 107 \mathrm{erg} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =1.987 \mathrm{cal}^{\mathrm{K}} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=2 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

AMOUNT OF THE SUBSTANCE

Amount of gas is measured in gram or kilogram.
$1 \mathrm{~kg}=10^{3} \mathrm{~g}$
The mass of the gas is expressed in number of moles.
Moles of gas (n) = Mass / Molar Mass

