

Collision Diameter, σ

- The distance between the centres of two gas molecules at the point of closest approach to each other is called the collision diameter.
- Two molecules come within a distance of σ-Collision occurs
- $\mathrm{H}_{2}-2.74 \mathrm{~A}^{0}$

$$
\mathrm{N}_{2}-3.75 \mathrm{~A}^{0}
$$

$$
\mathrm{O}_{2}-3.61 \mathrm{~A}^{0}
$$

$$
\sigma=r_{A}+r_{E}
$$

Collision Number, Z

- The average number of collisions suffered by a single molecule per unit time per unit volume of a gas is called collision number.

$$
Z=\sqrt{2} \pi v \sigma^{2} \rho
$$

$\rho=\frac{N}{V}$ Number Density $(\rho)-$ Number of Gas Molecules per Unit Volume

Unit of $Z=m s^{-1} \times m^{2} \times m^{-3}=s^{-1}$

Collision Frequency, Z_{11}

- The total number of collisions between the molecules of a gas per unit time per unit volume is called collision frequency.

Collision Frequency, $Z_{11}=$ Collision Number \times Total Number of molecules
Collision Frequency, $Z_{11}=\sqrt{2} \pi v \sigma^{2} \rho \times \rho$
Considering collision between like molecules
Collision Frequency, $Z_{11}=1 / 2 \times \sqrt{2} \pi v \sigma^{2} \rho \times \rho=\frac{1}{\sqrt{2}} \pi v \sigma^{2} \rho^{2}$
Unit of $Z_{11}=s^{-1} \mathrm{~m}^{-3}$
The number of bimolecular collisions in a gas at ordinary T and $P-10^{34} \mathrm{~s}^{-1} \mathrm{~m}^{-3}$

$$
Z_{11}=\frac{1}{\sqrt{2}} \pi v \sigma^{2} \rho^{2}
$$

$$
Z_{11}=2 \sigma^{2} \rho^{2} \sqrt{\frac{\pi R T}{M}}
$$

$Z_{11} \propto \sqrt{T}$
$Z_{11} \propto \rho^{2}$
$Z_{11} \propto P^{2}$
$Z_{11} \propto \sigma^{2}$
at a given P
at a given T
at a given T
at a given T, P

For collisions between two different types of molecules.

$$
Z_{12}=\frac{1}{\sqrt{2}} \pi v^{2} \sigma^{2} \rho_{1}^{2} \rho_{2}^{2}
$$

MEAN FREE PATH, λ

FREE PATH - The distance travelled by a molecule between two successive collisions.
MEAN FREE PATH - The average distance travelled by a molecule between two successive collisions.

$$
\lambda=\frac{v}{Z}=\frac{v}{\sqrt{2} \pi v \sigma^{2} \rho}
$$

$$
\lambda=\frac{1}{\sqrt{2} \pi \sigma^{2} \rho}
$$

Larger the size of molecule - Smaller will be the mean free path
Mean freepath is of the order $10^{-7} \mathrm{~m}$

EFFECT OF TEMPERATURE AND PRESSURE ON MEAN FREE PATH

$$
\lambda=\frac{1}{\sqrt{2} \pi \sigma^{2} \rho}
$$

' σ ' is the collision diameter and ' ρ ' is the number density

Relation between Number Density and Pressure:

$P V=n R T$
$\frac{n}{V}=\frac{P}{R T}$
$\frac{n}{V} \cdot N_{0}=\frac{P}{R T} \cdot N_{0}$
$\rho=\frac{P}{R T} \cdot N_{0}$
$n N_{0}=$ Total no. of molecules in n moles of the gas.
$\rho=\frac{P}{\left(R / N_{0}\right) T}$
$\frac{n N_{0}}{V}=$ Total no. of molecules per unit volume of the gas $=\rho$
$\rho=\frac{P}{k T}$

$$
\lambda=\frac{1}{\sqrt{2} \pi \sigma^{2} \rho} \quad \rho=\frac{P}{k T}
$$

$$
\lambda=\frac{k T}{\sqrt{2} \pi \sigma^{2} P}
$$

σ is independent of temperature and pressure.
$\lambda \propto T \quad$ at constant P
$\lambda \propto \frac{1}{P} \quad$ at constant T

VISCOSITY OF GASES

- Viscosity is the resistance one part of a fluid offers to the flow of another part of it.
- Internal friction operating within a fluid due to the shearing effect.
- Gas is moving in layers - LAMINAR FLOW OR STREAMLINE FLOW
- Adjacent layers of gas molecules move at different rates.

- The velocity changes gradually from one layer to other.
- The velocity increases with increase in distance from the stationary surface.
- Each layer experiences a frictional force called viscous drag.
- Retarding influence of the slower-moving layer on the adjacent faster-moving layer
- Manifested as resistance to flow or viscosity.

The viscous force depends on area of contact and velocity gradient

$$
F \propto \frac{d v}{d z} \quad F \propto A
$$

$$
F=-\eta \cdot A \cdot \frac{d \nu}{d z}
$$

$\eta=$ coefficient of viscosity or viscosity.

$$
\frac{F}{A}=\eta \quad \text { when } \frac{d v}{d z}=1
$$

Coefficient of viscosity is defined as the force per unit area required to maintain a unit velocity difference between two adjacent parallel layers of a fluid unit distance apart.

Unit of Coefficient of Viscosity

$\eta=-\cdot \frac{F}{A} \cdot \frac{d z}{d v}$

Unit of $\eta=\mathrm{Nm}^{-2} \mathrm{~s}$ or Pas

In CGS system the unit is Poise

1 Poise = 0.1 Pa s

Relationship between Coefficient of Viscosity and Mean Free Path

$$
\eta=\frac{1}{3} \cdot v \cdot d \cdot \lambda
$$

Where, ' d ' is the density of the gas
$d=\frac{m a s s}{V}=\frac{m N}{V}=\frac{M}{N_{0}} \cdot \frac{N}{V}=\frac{M}{N_{0}} \rho$
$\lambda=\frac{k T}{\sqrt{2} \pi \sigma^{2} P} \quad v=\sqrt{\frac{8 R T}{\pi M}}$
$\eta=\frac{2}{3 \pi N_{0} \sigma^{2}} \sqrt{\frac{M R T}{\pi}}$

Dependence of Viscosity on Temperature and Pressure
$\eta=\frac{2}{3 \pi N_{0} \sigma^{2}} \sqrt{\frac{M R T}{\pi}}$
$\eta \propto \sqrt{T}$

Viscosity is independent of Pressure

BAROMETRIC DISTRIBUTION LAW

- The molecules in a very large column of gas under the influence of gravity.
- Due to this the molecules are not distributed evenly.
- More molecules at the lower levels than at higher levels.
- Pressure of the gas will be different at different vertical positions in the container.
- Variation in pressure is explained by Barometric Distribution
 law.

$$
\begin{aligned}
& p=\text { Pressure at height } h \text { above the reference level } \\
& p_{0}=\text { Pressure at some reference level } \\
& \mathrm{M}=\text { Molecular Mass } \\
& g=\text { Acceleration due to gravity } \\
& \mathrm{R}=\text { Universal Gas Constant } \\
& \mathrm{T}=\text { Kelvin Temperature }
\end{aligned}
$$

