

Collision Diameter, σ

- The distance between the centres of two gas molecules at the point of closest approach to each other is called the collision diameter.
- Two molecules come within a distance of σ Collision occurs

• H₂ - 2.74 A⁰ N₂ - 3.75 A⁰ O₂ - 3.61 A⁰

Collision Number, Z

• The average number of collisions suffered by a single molecule per unit time per unit volume of a gas is called collision number.

$$Z = \sqrt{2}\pi v \sigma^2 \rho$$

 $ho = \frac{N}{V}$ Number Density (ho) – Number of Gas Molecules per Unit Volume

Unit of Z = $ms^{-1} \times m^2 \times m^{-3} = s^{-1}$

Collision Frequency, Z₁₁

 The total number of collisions between the molecules of a gas per unit time per unit volume is called collision frequency.

Collision Frequency, Z₁₁ = Collision Number × Total Number of molecules

Collision Frequency, $Z_{11} = \sqrt{2}\pi\nu\sigma^2\rho\times\rho$

Considering collision between like molecules

Collision Frequency,
$$Z_{11} = \frac{1}{2} \times \sqrt{2}\pi\nu\sigma^2\rho \times \rho = \frac{1}{\sqrt{2}}\pi\nu\sigma^2\rho^2$$

Unit of $Z_{11} = s^{-1} m^{-3}$

The number of bimolecular collisions in a gas at ordinary T and P – 10^{34} s⁻¹ m⁻³

Influence of T and P

$$Z_{11} = \frac{1}{\sqrt{2}}\pi\nu\sigma^2\rho^2$$

$$Z_{11} = 2\sigma^2 \rho^2 \sqrt{\frac{\pi RT}{M}}$$

$$Z_{11} \propto \sqrt{T}$$

at a given T

 $Z_{11} \propto \sigma^2$

at a given T , P

For collisions between two different types of molecules.

$$Z_{12} = \frac{1}{\sqrt{2}} \pi v^2 \sigma^2 \rho_1^2 \rho_2^2$$

MEAN FREE PATH, λ

- **FREE PATH** The distance travelled by a molecule between two successive collisions.
- **MEAN FREE PATH** The average distance travelled by a molecule between two successive collisions.

$$\lambda = \frac{v}{Z} = \frac{v}{\sqrt{2}\pi v \sigma^2 \rho}$$

Larger the size of molecule – Smaller will be the mean free path

Mean freepath is of the order 10⁻⁷ m

EFFECT OF TEMPERATURE AND PRESSURE ON MEAN FREE PATH $\lambda = \frac{1}{\sqrt{2}\pi\sigma^{2}\rho}$

' σ ' is the collision diameter and ' ρ ' is the number density

Relation between Number Density and Pressure:

PV = nRT $\frac{n}{V} = \frac{P}{RT}$ $\frac{n}{V} \cdot N_0 = \frac{P}{RT} \cdot N_0$ $\rho = \frac{P}{RT} \cdot N_0$ $\rho = \frac{P}{(R/N_0)T}$

 nN_0 = Total no. of molecules in *n* moles of the gas.

 $\frac{nN_0}{V}$ = Total no. of molecules per unit volume of the gas = ρ

 σ is independent of temperature and pressure.

 $\lambda \propto T$ at constant P $\lambda \propto \frac{1}{P}$ at constant T thin gas dense gas (high pressure) (low pressure)

VISCOSITY OF GASES

- Viscosity is the resistance one part of a fluid offers to the flow of another part of it.
- Internal friction operating within a fluid due to the shearing effect.
- Gas is moving in layers LAMINAR FLOW OR STREAMLINE FLOW

- The velocity changes gradually from one layer to other.
- The velocity increases with increase in distance from the stationary surface.
- Each layer experiences a frictional force called viscous drag.
- Retarding influence of the slower-moving layer on the adjacent faster-moving layer
 - Manifested as resistance to flow or **viscosity**.

The viscous force depends on area of contact and velocity gradient

$$F \propto \frac{dv}{dz}$$
 $F \propto A$

$$F = -\eta \cdot A \cdot \frac{d\nu}{dz}$$

 η = coefficient of viscosity or viscosity.

$$\frac{F}{A} = \eta \qquad \qquad \text{when } \frac{dv}{dz} = 1$$

Coefficient of viscosity is defined as the force per unit area required to maintain a unit velocity difference between two adjacent parallel layers of a fluid unit distance apart.

Unit of Coefficient of Viscosity

 $\eta = - \cdot \frac{F}{A} \cdot \frac{dz}{dv}$

Unit of η = Nm⁻²s or Pas

In CGS system the unit is **Poise**

1 *Poise* = 0.1 *Pa s*

Relationship between Coefficient of Viscosity and Mean Free Path

 $\eta = \frac{1}{3} \cdot \nu \cdot d \cdot \lambda$

Where, 'd' is the density of the gas

$$d = \frac{mass}{V} = \frac{mN}{V} = \frac{M}{N_0} \cdot \frac{N}{V} = \frac{M}{N_0}\rho$$

$$\lambda = \frac{kT}{\sqrt{2}\pi\sigma^2 P} \qquad \qquad \nu = \sqrt{\frac{8RT}{\pi M}}$$

$$\eta = \frac{2}{3\pi N_0 \sigma^2} \sqrt{\frac{MRT}{\pi}}$$

Dependence of Viscosity on Temperature and Pressure

$$\eta = \frac{2}{3\pi N_0 \sigma^2} \sqrt{\frac{MRT}{\pi}}$$

$$\eta \propto \sqrt{T}$$

Viscosity is independent of Pressure

BAROMETRIC DISTRIBUTION LAW

- The molecules in a very large column of gas under the influence of gravity.
- Due to this the molecules are not distributed evenly.
- More molecules at the lower levels than at higher levels.
- Pressure of the gas will be different at different vertical positions in the container.
- Variation in pressure is explained by Barometric Distribution law.

- p = Pressure at height h above the reference level
- p_0 = Pressure at some reference level
- M = Molecular Mass
- g = Acceleration due to gravity
- R = Universal Gas Constant
- T = Kelvin Temperature

 $P_h = P_0 e^{-\frac{mgh}{kT}}$ m_{avg} = 29amu for dry air P_{0}