BET ADSORPTION ISOTHERM

- Brunauer-Emmett-Teller (BET) theory explains the physical adsorption of gas molecules on a solid surface.
- The BET theory applies to systems of multilayer adsorption.
- An important analysis technique for the measurement of the specific surface area of materials.

Stephen Brunauer

$$
\frac{V}{V_{m}}=\frac{c x}{(1-x)[1+(c-1)] x}
$$

Paul Emmett
Edward Teller

$$
\frac{P}{V\left(P^{0}-P\right)}=\frac{1}{c \cdot V_{m}}+\frac{(c-1)}{c \cdot V_{m}} \cdot \frac{P}{P^{0}}
$$

ASSUMPTIONS OF BET THEORY

- The gas molecules undergo multilayer adsorption on solid surface.
- The principle of Langmuir theory can be applied to each layer.
- A dynamic equilibrium exists between successive layers. The rate of evaporation from a particular layer is equal to the rate of condensation of the preceding layer.
- The enthalpy of adsorption of the first layer $\left(\mathrm{E}_{1}\right)$ is a constant, whereas that of any layer above the first layer is the energy of liquefaction of the adsorbate $\left(\mathrm{E}_{\mathrm{L}}\right)$
- Condensation forces are the principal forces of attraction.

MODELLING OF ADSORPTION ACCORDING TO BET THEORY

$S_{0}, S_{0}, S_{2}, S_{3} \ldots \ldots S_{i}$ represent the surface area of the adsorbent covered by $0,1,2,3 \ldots$. i layers of adsorbates.
Rate of condensation on the bare surface $=a_{1} P S_{0}$

Rate of evaporation from the first layer $=b_{1} S_{1} e^{-E_{1} / R T}$
$a_{1} P S_{0}=b_{1} S_{1} e^{-E_{1} / R T}$
According to assumption (iii) of BET

$$
\begin{aligned}
& a_{2} P S_{1}=b_{2} S_{2} e^{-E_{2} / R T} \\
& a_{3} P S_{2}=b_{3} S_{3} e^{-E_{3} / R T}
\end{aligned}
$$

$$
a_{i} P S_{i-1}=b_{i} S_{i} e^{-E_{i} / R T}
$$

Total surface area of the adsorbent

$$
A=\sum_{i=0}^{\infty} S_{i}
$$

Total volume of the adsorbed gas

$$
V=V_{0} \sum_{i=0}^{\infty} i S_{i}
$$

V_{0} is the volume of the gas adsorbed on $1 \mathrm{~cm}^{2}$ of the adsorbent surface monolayer coverage.

$$
\frac{V}{A}=\frac{V_{0} \sum_{i=0}^{\infty} i S_{i}}{\sum_{i=0}^{\infty} S_{i}} \Longrightarrow \frac{V}{A V_{0}}=\frac{\sum_{i=0}^{\infty} i S_{i}}{\sum_{i=0}^{\infty} S_{i}} \Longrightarrow \frac{V}{V_{m}}=\frac{\sum_{i=0}^{\infty} i S_{i}}{\sum_{i=0}^{\infty} S_{i}}
$$

V_{m} is the volume of the gas for monolayer coverage.

Approximations by Stephen Brunauer, Paul Emmett and Edward Teller made a couple of approximations

$$
E_{2}=E_{3}=E_{4} \ldots \ldots \ldots=E_{i}=E_{L}
$$

$$
\frac{b_{2}}{a_{2}}=\frac{b_{3}}{a_{3}}=\frac{b_{4}}{a_{4}}=\ldots \ldots \ldots=\frac{b_{i}}{a_{i}}=g
$$

$$
\begin{aligned}
& S_{1}=\left(\frac{a_{1}}{b_{1}}\right) \cdot P e^{E_{1} / R T} \cdot S_{0} \\
& S_{1}=y S_{0} \\
& y=\left(\frac{a_{1}}{b_{1}}\right) \cdot P e^{E_{1} / R T} \\
& S_{2}=\left(\frac{a_{2}}{b_{2}}\right) \cdot P e^{E_{2} / R T} \cdot S_{1} \\
& S_{2}=\left(\frac{P}{g}\right) \cdot e^{E_{L} / R T} \cdot S_{1} \\
& x=\left(\frac{P}{g}\right) \cdot e^{E_{L} / R T} \\
& a_{1} P S_{0}=b_{1} S_{1} e^{-E_{i} / R T} \\
& a_{2} P S_{1}=b_{2} S_{2} e^{-E_{2} / R T} \\
& a_{3} P S_{2}=b_{3} S_{3} e^{-E_{3} / R T} \\
& a_{i} P S_{i-1}=b_{i} S_{i} e^{-E_{i} / R T} \\
& E_{2}=E_{3}=E_{4} \ldots \ldots \ldots \ldots=E_{i}=E_{L} \\
& \frac{b_{2}}{a_{2}}=\frac{b_{3}}{a_{3}}=\frac{b_{4}}{a_{4}}=\ldots \ldots \ldots . .=\frac{b_{i}}{a_{i}}=g
\end{aligned}
$$

$$
\begin{array}{ll}
S_{3}=x \cdot S_{2} & \\
S_{3}=x \cdot x \cdot S_{1}=x^{2} \cdot S_{1} & \text { by putting } S_{2}=x \cdot y S_{0} \\
S_{3}=x^{2} \cdot y S_{0} & \text { by putting } S_{1}=y S_{0} \\
S_{4}=x^{3} \cdot y S_{0} & \\
S_{i}=x^{i-1} \cdot y S_{0} & c=\frac{y}{x}=\frac{\left(\frac{a_{1}}{b_{1}}\right) \cdot P e^{E_{i} / R T}}{\left(\frac{P}{g}\right) \cdot e^{E_{i} / R r}}=\left(\frac{a_{1}}{b_{1}}\right) \cdot g e^{\left(E_{i}-E_{i}\right)_{l} / k r} \\
S_{i}=x^{i} \cdot c \cdot S_{0} &
\end{array}
$$

$$
\begin{aligned}
& \frac{V}{V_{m}}=\frac{\sum_{i=0}^{\infty} i S_{i}}{\sum_{i=0}^{\infty} S_{i}} \\
& \frac{V}{V_{m}}=\frac{\sum_{i=0}^{\infty} i S_{i}}{\sum_{i=0}^{\infty} S_{i}}=\frac{0+\sum_{i=1}^{\infty} i S_{i}}{S_{0}+\sum_{i=1}^{\infty} S_{i}} \\
& \frac{V}{V_{m}}=\frac{\sum_{i=1}^{\infty} i \cdot x^{i} c S_{0}}{S_{0}+\sum_{i=1}^{\infty} x^{i} c S_{0}}=\frac{c S_{0} \sum_{i=1}^{\infty} i \cdot x^{i}}{S_{0}+c S_{0} \sum_{i=1}^{\infty} x^{i}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{V}{V_{m}}=\frac{c \sum_{i=1}^{\infty} i \cdot x^{i}}{1+c \sum_{i=1}^{\infty} x^{i_{i}}} \text { Applying the expressions for summations } \quad \sum_{i=1}^{\infty} i \cdot x^{i}=\frac{x}{(1-x)^{2}} \quad \text { and } \quad \sum_{i=1}^{\infty} x^{i}=\frac{x}{(1-x)}
\end{aligned}
$$

$$
\frac{V}{V_{m}}=\frac{c \frac{x}{(1-x)^{2}}}{1+c \frac{x}{(1-x)}}=\frac{\frac{c x}{(1-x)}}{(1-x)+c x}=\frac{\frac{c x}{(1-x)}}{1+(c-1) x}
$$

$$
\frac{V}{V_{m}}=\frac{c x}{(1-x)[1+(c-1) x]}
$$

$$
\frac{x}{(1-x) V}=\frac{[1+(c-1) x]}{c V_{m}}
$$

$$
\frac{x}{(1-x) V}=\frac{1}{c V_{m}}+\frac{(c-1)}{c V_{m}} x
$$

Different forms of BET equation

$$
\frac{p}{\left(p^{0}-p\right) V}=\frac{1}{c V_{m}}+\frac{(c-1)}{c V_{m}} \frac{p}{p^{0}}
$$

$$
x=\frac{p}{p^{0}}
$$

p is the equilibrium pressure of the gas over the surface
p^{0} is the saturated vapour pressure of the gas at experimental conditions

BET equation and Langmuir equation:

$\frac{V}{V_{m}}=\frac{c x}{(1-x)}\left[\frac{1-(n+1) x^{n}+n x^{n+1}}{1+(c-1) x-c x^{n+1}}\right]$

$$
\frac{x}{(1-x) V}=\frac{1}{c V_{m}}+\frac{(c-1)}{c V_{m}} x
$$

For Langmuir adsorption isotherm, $\mathrm{n}=1$, then
$\frac{V}{V_{m}}=\frac{c x}{(1-x)}\left[\frac{1-2 x+x^{2}}{1+(c-1) x-c x^{2}}\right]$
$\frac{V}{V_{m}}=\frac{c x}{(1-x)} \times \frac{(1-x)^{2}}{\left[1+(c-1) x-c x^{2}\right]}=\frac{c x}{(1-x)} \times \frac{(1-x)^{2}}{\left[1+c x-x-c x^{2}\right]}=\frac{c x}{(1-x)} \times \frac{(1-x)^{2}}{[(1-x)+c x(1-x)]}$
$\frac{V}{V_{m}}=\frac{c x}{(1-x)} \times \frac{(1-x)^{2}}{(1-x)(1+c x)} \quad \Longrightarrow \quad \frac{V}{V_{m}}=\frac{c x}{(1+c x)}$

Explanations of Different isotherms by BET Theory:

i) When $E_{1} \ggg E_{L}$, the value of ' c ' becomes very large.

The BET equation reduces to Langmuir isotherm for

$$
c=\left(\frac{a_{1}}{b_{1}}\right) \cdot g e^{\left(E_{1}-E_{L}\right) / R T}
$$

monolayer adsorption. Hence Type I isotherm is
explained.
Type I

When $E_{1}>E_{L}$, an intermediate value of ' c ' is obtained.
This gives Type II adsorption isotherm indicating

$$
c=\left(\frac{a_{1}}{b_{1}}\right) \cdot g e^{\left(E_{1}-E_{L}\right) / R T}
$$ multilayer adsorption.

When $\mathrm{E}_{1}<\mathrm{E}_{\mathrm{L}}$, small values of ' c ' are obtained.

$$
c=\left(\frac{a_{1}}{b_{1}}\right) \cdot g e^{\left(E_{1}-E_{L}\right) / R T}
$$

This results in Type III adsorption isotherm, where multilayer adsorption begins even before the completion of monolayer adsorption.

Type III

DETERMINATION OF SURFACE AREA

- Surface area of the adsorbent can be obtained by calculating the volume of monolayer coverage $\left(V_{m}\right)$ using BET and Langmuir isotherms.

V_{m} - The volume of the gas at STP required to cover the whole surface of adsorbent by monolayer adsorption.
Number of gas molecules in $22.414 \mathrm{dm}^{3}$ of adsorbate gas at $\mathrm{STP}=\mathrm{N}_{0}$ (Avogadro number)
Number of gas molecules in $V_{m} \mathrm{dm}^{3}$ of adsorbate gas at STP $=\frac{N_{0}}{22.414} \times V_{m}$
' $\mathrm{S} \mathrm{m}^{2}$ - The area of single adsorbate gas molecule occupying the surface of adsorbent
Area occupied by $\frac{N_{0}}{22.414} \times V_{m}$ number of particles $=\frac{N_{0} \cdot V_{m} \cdot S}{22.414} m^{2}$

Surface area of the adsorbent $=\frac{N_{0} \cdot V_{m} \cdot S}{22.414} m^{2}$

Nitrogen gas is generally used for finding out the surface area. The cross sectional area of nitrogen is usually taken as $1.62 \times 10^{-19} \mathrm{~m}^{2}$

The value of V_{m} can be obtained from graphical methods.

From Langmuir Isotherm

$$
\begin{aligned}
& \theta=\frac{b P}{1+b P} \\
& \frac{1}{\theta}=\frac{1}{b P}+1 \quad \theta=\frac{V}{V_{m}} \\
& \frac{V_{m}}{V}=\frac{1}{b P}+1 \\
& \frac{1}{V}=\frac{1}{b P V_{m}}+\frac{1}{V_{m}} \\
& \text { Slope }==\frac{1}{b V_{m}} \\
& \text { Inercept }=\frac{1}{V_{m}}
\end{aligned}
$$

From BET Isotherm

$\frac{p}{\left(p^{0}-p\right) V}=\frac{1}{c V_{m}}+\frac{(c-1)}{c V_{m}} \frac{p}{p^{0}}$
Plot a graph between $\frac{P}{V\left(P^{0}-P\right)}$ and $\frac{P}{P^{0}}$

