Genome Sequencing and Assembly High throughput Sequencing

IV MSc Botany

Dr Giby Kuriakose

Competing Sequencing Strategies Clone-by-clone and whole-genome shotgun

Clone-by-Clone Shotgun Sequencing

- E.g. Human genome project
- <u>Map construction</u>
- <u>Clone selection</u>
- <u>Subclone library construction</u>
- <u>Random shotgun phase</u>
- <u>Directed finishing phase and</u> <u>sequence authentication</u>

Map Construction

- Clone genomic DNA in YACs (~1MB) or BACs (~200KB)
- Map the relative location of clones
 - Sequenced-tagged sites (STS, e.g. EST) mapping
 - PCR or probe hybridization to screen STS
 - Restriction site fingerprint
- Most time consuming
 - 1990-98 to generate physical maps for human <u>http://www.ncbi.nlm.nih.gov/genemap99/</u>

Clone Selection

- Based on clone map, select authentic clones to generate a minimum tiling path
 - Most important criteria: authentic

Subclone Library Construction

- DNA fragmented by sonication or RE cut
- Fragment size ~ 2-5 KB

Random Shotgun Phase

- Dideoxy termination reaction
- Informatics programs
- Coverage and contigs

Dideoxy Termination

- Method invented by Fred Sanger
- Automated sequencing developed by Leroy Hood (Caltech) and Michael Hunkapiller (ABI)

Bioinformatics Programs

- Developed at Univ. Wash
- Phred
 - Base calling
 - Phil Green
- Phrap
 - Assembly
 - Brent Ewing
- Consed
 - Viewing and editing
 - David Gordon

📥 Aligned Reads						•	
File Navigate Info Col	or Dim Misc					ł	Help
consed.fasta.screen.ace.2			93	Some Ta	gs Pos:		clear
Search for String Compl Co	ont Compare Cont	Find Main Win	Err/10kb:	1041			
	1940	1950	1960	1970	1980	1990	I A
CONSENSUS	GGGGTCCCC	ACTTAACCTTT	CCCTGCACTO	GGGAGCCTTT	CCAGGCTCC	CAGCCCATCO	CA
djs74-824.s1 dis74-1432.s1	- acatgcacg	caaatagtggt	tgeteetgt	gtatggagat:	agggtcaag ttagetaet	gaagtatgtt	8
djs74-237.s1			CCCTGCACTO	GGgagcctTT	CCAGgCTCC	CagooCATCO	Â
djs74-1332.s1 djs74-1802.s1		ACTTAACCTTT	CCCTGCACte	gggaGCCTTT	CCAGGCTCC	CAGCCCATCO	Â
djs74-996.s2 djs74-2689 s1		acttaaccttt	ccctgcactg	(ge*age*ttt	ccaggetee	ageceate(A
djs74-2350.s1	gGGgTCCCC	ACtTAACCTTT	CCCTGCACt	gggagccTTT	CCaggeteC	CAGCCCATCO	Â
djs74-1180.s1 djs74-2361.s1	- aggaccccc	acttaacciii acttaaccttt	CLCCCGCACTS	gggageeutt ga <mark>g*age**t</mark> t	ccaagetee	cagecelhict cagece <mark>ATe</mark> c	л за
4							
<pre></pre>	>>> cursor					dismi	ss
- Trace Window: Conti	g3						•
		Di	smiss				
djs74-1802.s1 con rd	.955 19 196 20	960 1 01 3	.965 206	1970 211	1975 216	1980 221	
con	ТСССТ	GCACT	GGGG	AGCCT	TTCC	AGGC	Ţ
H B edt		GCAC <mark>T</mark>	g g g g G G G G	A G C C T		A G G C	
Scroll			1				
Together? Yes Vo			ALA				
		$\Lambda \Lambda \Lambda \Lambda$		$\wedge h \wedge \wedge h$	$\Lambda\Lambda\Lambda$	M_{Λ}	\mathcal{N}
Remove					V _ V _ J		<u>x_</u> /
Help Insert	prev	Di	smiss	next	;	Help De	lete

Coverage and contigs

- Coverage: sequenced bp / fragment size
 - E.g. 200KB BAC, sequenced 1000 x 500bp subclones, coverage = 1000 x 500bp / 200KB = 2.5X
- Lander-Waterman curve

Directed Finishing Phase

- David Gordon: auto-finish
 - Deign primers at gap 2 ends, PCR amplify, and sequence the two ends until they meet

- Sequence authentication: verify STS and RE sites
 - Finished: < 1 error (or ambiguity) in 10,000bp, in the right order and orientation along a chromosome, almost no gaps.

Genome-Shotgun Sequencing

- Celera human and drosophila genomes
- No physical map
- Jigsaw puzzle assembly
- Coverage ~7-10X

Shotgun Assembly

- Screener
 - Identify low quality reads, contamination, and repeats
- Overlapper
 - >= 40bp overlap with <= 6% mismatches</p>
- Unitigger
 - Combine the easy (unique assembly) subset first
- Scaffolder & repeat resolution
 - Generate different sized-clone libraries, and just sequence the clone ends (read pairs)
 - Use physical map information if available

• Consensus

Hybrid Method

Hybrid Method

- Optimal mixture of clone-by-clone vs whole-genome shotgun not established
 - Still need 8-10X overall coverage
 - Bacteria genomes can be sequenced WGS alone
 - Higher eukaryotes need more clone-by-clone
 - Comparative genomics can reduce the physical mapping (clone-by-clone) need

First Generation Sequencing

PRODUCTION

Rooms of equipment Sample preparations 35 people 3-4 weeks

SEQUENCING

74x Capillary Sequencers
10 people
15-40 runs per day
1-2Mb per instrument per day
120Mb total capacity per day

Human Genome Project

- 1990-2003
- Cost \$3,000,000,000
- Thousands of scientists in six countries
- Triumph of automation and bioinformatics
- More significant than the Manhattan Project and moon landing

Second Generation Sequencing

PRODUCTION

1x Cluster Station 1 person 1 day

1x Genome Analyzer Same person as above 1 run per 3-5 days 0.5Gb per day per instrument

2nd Gen Sequencing Tech

- Traditional sequencing: 384 reads ~1kb / 3 hours
- 454 (Roche):
 - 1M reads 450-1000bp / 10-24 hours
- HiSeq (Illumina):
 - <u>http://www.youtube.com/watch?v=HtuUFUnYB9Y</u>
 - 100-200M reads of 50-100bp / 3-8 days * 16 samples
- SOLiD (Applied Biosystems)
 - > 100M reads of 50-60bp / 2-8 days * 12 samples
- Ion Torrent (Roche):
 - <u>http://www.youtube.com/watch?v=yVf2295JqUg</u>
 - 5-10M reads of 200-400bp / < 2 hours</p>

Illumina HiSeq2000

- Throughput:
 - \$1000-2500 / lane (depends on read length, SE / PE)
 - 50-100 bp / read
 - 16 lanes (2 flow cells) / run
 - 150-200 million reads / lane
 - Sequencing a human genome: \$3000, 1 week
- Bioinfo challenges
 - Very large files
 - CPU and RAM hungry
 - Sequence quality filtering
 - Mapping and downstream analysis

(Potential) Applications

- Metagenomics and infectious disease
- Ancient DNA, recreate extinct species
- Comparative genomics (between species) and personal genomes (within species)
- Genetic tests and forensics
- Circulating nucleic acids
- Risk, diagnosis, and prognosis prediction
- Transcriptome and transcriptional regulation
 - More later in the semester...

Third Generation Sequencing

- Single molecule sequencing (no amplification needed)
- Oxford Nanopore: Read fewer but longer sequences <u>http://www.youtube.com/watch?v=_rRrOT9gfpo</u>
- In 1-2 years, the cost of sequencing a human genome will drop below \$1000, storage will cost more than sequencing
- Personal genome sequencing might become a key component of public health in every developed country
- Bioinformatics will be key to convert data into knowledge

Summary

- Genome sequencing and assembly
 - Clone-by-clone: HGP
 - Map big clones, find path, shotgun sequence subclones, assemble and finish
 - Sequencing: dideoxy termination
 - Whole genome shotgun: Celera
- Massively Parallel Sequencing
 - 454, Solexa, SOLiD, Ion Torrent, Oxford Nanopore...
 - Many opportunities and many challenges

Acknowledgement

- Fritz Roth
- Dannie Durand
- Larry Hunter
- Richard Davis
- Wei Li
- Jarek Meller
- Stefan Bekiranov
- Stuart M. Brown
- Rob Mitra