MEASURES OF DISPERSION

- Indicates how many items are deviating from the central value
- Large value of this measure indicates larger variability and lessor consistency
- 7 properties of central value

ABSOLUTE MEASURE

RELATIVE MEASURE

*

ABSOLUTE MEASURE

- RANGE
- QUARTILE DEVIATION
- MEAN DEVIATION
- STANDARD DEVIATION

RELATIVE MEASURE

- CO-EFFICIENT OF RANGE
- CO-EFFICIENT OF QUARTILE DEVIATION
- CO-EFFICIENT OF OF MEAN DEVIATION
- CO-EFFICIENT OF STANDARD DEVIATION

RANGE

- ONLY USED FOR CRUDE ANALYSIS
- RANGE = HIGHEST VALUE LOWEST VALUE
- CO-EFFICIENT OF RANGE = HIGHEST VALUE LOWEST VALUE

HIGHEST VALUE + LOWEST VALUE

QUARTILE DEVIATION

- Better measure than range
- Inter quartile range = Q3-Q1
- QD = (Q3-Q1) /2
- CO-EFFICIENT OF QD = (Q3-Q1)/(Q3+Q1)

MEAN DEVIATION (M.D.)

• It is also called Average Deviation

• Used for management forecasting as forecasting tool.

• M.D. from Median =
$$\frac{\Sigma |X - M|}{N}$$
 or $\frac{\Sigma |d_M|}{N}$
• M.D. from Mean = $\frac{\Sigma |X - X|}{N}$ or $\frac{\Sigma |d|}{N^*}$
• Coefficient of M.D._M = $\frac{M \cdot D \cdot M}{Median}$
• Coefficient of M.D._X = $\frac{M \cdot D \cdot M}{Median}$
Mea

STANDARD DEVIATION

- Karl Pearson
- Widely used and significant
- Root mean square deviation

$$S = \sqrt{\frac{\Sigma(X - \overline{X})^2}{N}}$$

where S = the standard deviation of a sample, Σ means "sum of," X = each value in the data set, X = mean of all values in the data set, N = number of values in the data set.