
WIDTHOF SPECTRAL LINES AND HYPERFINE STRUCTURE

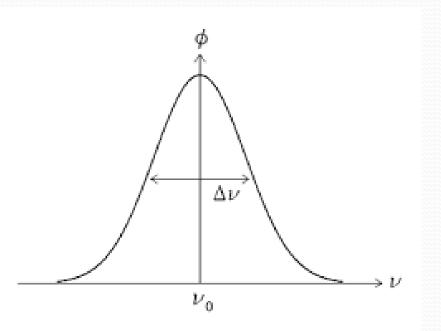
WIDTH OF SPECTRAL LINES

• FULL WIDTH AT HALF MAXIMUM(FWHM)

REASONS: 1)NATURAL LINE WIDTH 2)DOPPLER BROADENING 3)COLLISION BROADENING

1)NATURAL LINE WIDTH

ENERGY LEVELS ARE NOT PRECISELY DETERMINED E2 - E1 = Δ E


 $\Delta E = h \Delta v$

Uncertainty principle, Energy level above

- ground state with energy *E and lifetime Δt,* has uncertainty in energy:
- $\Delta E \Delta t \sim \hbar$
- ie short-lived states have large uncertainties in the energy.
- A photon emitted in a transition from this level to the ground state will have a range of possible frequencies,

$$\Delta v \sim \Delta E/h \sim 1/(2\pi\Delta t)$$

LORENTZIAN PROFILE

• DECAY RATE: $\gamma = \sum A_{nn'}$

$$\Phi(\nu) = \frac{\gamma / 4 \pi^2}{(\nu - \nu_0)^2 + (\gamma / 4 \pi)^2}$$

2) DOPPLER BROADENING

FREQUENCY OF EMITTED RADIATION DEPENDS ON VELOCITY OF SOURCE RELATIVE TO THAT OF OBSERVER.

WAVELENGTH OBSERVED BY THE OBSERVER:

 $\qquad \qquad \Lambda = \Lambda_{\circ} + (1 + V/C)$

3)COLLISION BROADENING

- COLLISION BETWEEN MOLECULES PERTURBS ENERGIES OF AN ATOMIC SYSTEM
- DEPENDS ON
- 1. PRESSURE
- 2. DENSITY
- 3. TEMPERATURE
- 4. NATURE OF MOLECULE

• SPECTRAL LINES OF GASEOUS SAMPLES ARE MORE **SHARPER** THAN THAT OF LIQUIDS

HYPERFINE STRUCTURE OF SPECTRAL LINES

HYPERFINE STRUCTURE: INDIVIDUAL MULTIPLET CONSIST OF A NUMBER OF LINES

ATOMIC NUCLEUS IS RESPONSIBLE FOR THE SPLITTING

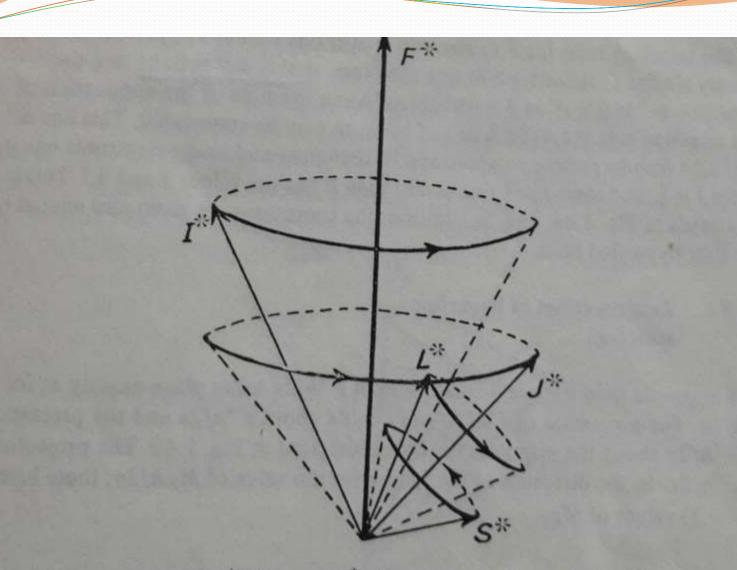


Fig. 1.43 Precession of $L^{*}h/2\pi$ and $S^{*}h/2\pi$ about their resultant $J^{*}h/2\pi$ and the precession of $J^{*}h/2\pi$ and $I^{*}h/2\pi$ about their resultant $F^{*}h/2\pi$. The vectors are in $h/2\pi$.

I*= NUCLEAR ANGULAR MOMENTUM

J*=ELECTRONIC ANGULAR MOMENTUM (DUE TO COUPLING OF L*&S*)

I* & J* COUPLES TO GIVE RESULTANT F* $F=J+I, J+I-1, J+I-2, \dots, (J-I).$

E_F=A/2 {F(F+1) - I(I+1) - J(J+1)} A=Interaction Constant E_F=Interaction Energy

SELECTION RULE: $\Delta F = 0, \pm 1$

THANK YOU!