STRUCTURES AND UNIONS INC

SHAILESH S

ASST. PROFESSOR

DEPT. OF COMPUTER SCIENCE
SH COLLEGE

OBJECTIVES

Be able to use compound data structures in programs

Be able to pass compound data structures as function
arguments, either by value or by reference

Be able to do simple bit-vector manipulations

Cox
Structures and Unions

STRUCTURES

Compound data: struct ADate {

int month;

int day;
A date is int year;

e an int month and }i

 an int day and
struct ADate date;

°* an int year
date.month = 1;
date.day = 18;
date.year = 2018;

Unlike Java, C doesn’t automatically
define functions for initializing and
printing ...

STRUCTURE REPRESENTATION

sizeof (struct ..) =

sum of sizeof (field) struct CharCharInt ({
+ alignment padding char el;
. o char c2;
Processor- and compiler-specific
int i;
} foo;
foo.cl = "a’;
foo.c2 = 'b’;
foo.i = OxDEADBEEF;
| 1 | e | padding | i |

x86 uses ‘little-endian” representation

TYPEDEF

Mechanism for creating new type names

* New names are an alias for some other type
« May improve clarity and/or portability of tl@,@ﬁgg&a&ystmg type

<

typedef long inté64_t; - names for clarity and
typedef struct ADate { portability

int month;

int day;
int year;
} Date; <« Simplify complex type names

D

int6é4 t 1 = 100000000000;
Date d = { 1, 18, 2018 };

CONSTANTS

Allow consistent use of the same constant throughout the

program

* Improves clarity of the program
* Reduces likelihood of simple erro

- Easier to update constants in the
Preprocessor dir

int array[10];

for (i=0; i<10; i++) {

I'S

grto ram Constant names are
cti

e capitalized by convention
N\ ~
#define SIZE 10
Define pnce,

for (i=0; i<SIZE; i++) {

int array[SI ZE7 use throyighout

the program

ARRAYS OF STRUCTURES

Array declaration Constant

\ — /

Date birthdays[NFRIENDS] ;

bool
check birthday (Date today)
{

int i; Array index, then

— structure field
for (i = 0; i < NFRIENDS; i++) { /

if ((today.month == birthdays[i] .month) &&
(today.day == birthdays[i] .day))

return (true);

return (false);

POINTERS TO STRUCTURES

Date void
create datel (int month, create date2 (Date *d,
int day, ”’,,,——””’Ent month,
int year) Pass-by-reference " int day,
{ int year)
Date d; {
= month;
onth = month; = day;
ay = day; = year;
ear = year; \}
\
} return (éli Date today;
\\ _ ”’,,—vtoday = create datel (1, 18, 2018);
Copies date create date2(stoday, 1, 18, 2018);
Cox

Structures and Unions

POINTERS TO STRUCTURES

void

create_date2 (Date *d, 0x30A8
int month, X
int day, 0x30A4
int year)

(0x30A0
d->month = month; 0x3098
d->day = day;
d->year = year;

}

void 0x1008

fun with dates(void)

{ 0x1004
Date today; 0x1000
create date2(&today, 1, 18, 2018);

}

POINTERS TO STRUCTURES

Date *
create date3 (int month,
int day,

int year)

What is d pointing to?!?!
(more on this later)

COLLECTIONS OF BOOLS

Byte, word, ... can represent many Booleans
One per bit, e.g., 00100101 = false, false, true, ..., true

Bit-wise operations:

Bit-wise AND: 00100101 & 10111100 == 00100100
Bit-wise OR: 00100101 | 10111100 == 10111101
Bit-wise NOT: ~ 00100101 == 11011010

Bit-wise XOR: 00100101 »~ 10111100 == 10011001

OPERATIONS ON BIT VECTORS

<:§22££>unsigned int low _three bits mask = 0x7; 0..00 0111
unsigned int bit vec = 0x15; \ 0..01 0101

| \

A mask indicates which bit positions we are interested in

Always use C's unsigned types for bit vectors

Selecting bits:

important bits = bit vec & low_three bits mask;

Result = ?
0..00 0101 == 0..01 0101 & 0.00 0111

OPERATIONS ON BIT VECTORS

const unsigned int 1low_three bits mask = 0x7; 0..00 0111
unsigned int bit vec = 0x15; 0..01 0101

Setting bits:

bit vec |= low_three bits mask; Result = ?

0..01 0111 == 0..01 0101 | 0..00 0111

OPERATIONS ON BIT VECTORS

const unsigned int 1low_three bits mask = 0x7; 0..00 0111
unsigned int bit vec = 0x15; 0..01 0101

Clearing bits:

bit vec &= ~low_three bits mask; Result = ?

0..01 0000 == 0..01 0101 & ~0..00 0111

BIT-FIELD STRUCTURES

Special syntax packs struct Flags {
structure values more int £1:3;
tlghtly unsigned int £2:1;

unsigned int £3:2;

- _ flags
Similar to bit vectors, but |} ™-F139°

arguably easier to read
my flags.fl = -2;

* Nonetheless, bit vectors my flags.f2 = 1;
are more commonly used.

my flags.f3 = 2;

Padded to be an integral
number of words £1 | £2] £3

o 3[AJ03]]o]- .

specific.

UNIONS

Choices:

An element is

eanint ior

* achar c

sizeof (union ..) =

maximum of sizeof (field)

union AnElt {
int i;
char c¢;

} eltl, elt2;

eltl.i = 4;
elt2.c = "a’;
elt2.i = OxDEADBEEF;

UNIONS

A union value doesn’t “know’” which case it contains

union AnElt {
int i;
char c¢;

} eltl, elt2;

4;
Ial;
OxDEADBEEF;

eltl.i
elt2.c
elt2.1i

if (eltl currently has a char)

How should your program keep track
whether eltl, elt2 hold an int or

a char?

Basic answer: Another variable holds
that info

TAGGED UNIONS

Tag every value with its case

l.e., pair the type info together with the union

Implicit in Java, Scheme, ML, ...

enum Union Tag { IS INT, IS CHAR };
struct TaggedUnion ({ ~—

enum Union Tag tag;

~ Enum must be external to struct,
so constants are globally visible.

union {
int i;
char c¢;

} data;
}; Struct field must be named.

THANK YOU

