HOMOGENEOUS LINEAR EQUATION WITH CONSTANT COEFFICIENTS

Higher Order Linear Differential Equations

CASE 1: DISTINCT REAL ROOTS:

Consider the nth-order homogenous linear differential equation with constant coefficients. If the auxiliary equation has distinct real roots $m_{1}, m_{2}, \ldots, m_{n}$ the general solution is

$$
y=c_{1} e^{m 1 x}+c_{2} e^{m 2 x}+\ldots \ldots \ldots+c_{n} e^{m n x}
$$

Where c_{1}, c_{2}, \ldots. are constants

Solve

$$
\frac{d^{3} y}{d x^{3}}-4 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+6 y=0
$$

Answer:

The auxiliary eqaution is $m^{3}-4 m^{2}+m+6=0$ The roots of this equation is $m=-1,2,3$

The general solution is

$$
y=c_{1} e^{-1 x}+c_{2} e^{2 x}+c_{3} e^{3 x}
$$

CASE 2: REPEATED REAL ROOTS:

Consider the nth-order homogenous linear differential equation with constant coefficients. If the auxiliary equation has real roots m occurring k times the general solution is
$y=\left(c_{1}+c_{2} x+c_{3} x^{2}+\ldots \ldots \ldots+c_{k} x^{k-1}\right) e^{m x}$

Where c_{1}, c_{2}, \ldots. are constants

Solve

$$
\frac{d^{3} y}{d x^{3}}-4 \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+18 y=0
$$

Answer:

The auxiliary eqaution is $m^{3}-4 m^{2}-3 m+18=0$ The roots of this equation is $m=3,3,-2$

The general solution is

$$
y=\left(c_{1}+c_{2} x\right) e^{3 x}+c_{3} e^{-2 x}
$$

CASE 3: CONJUGATE COMPLEX ROOTS:

Consider the nth-order homogenous linear differential equation with constant coefficients. If the auxiliary equation has conjugate complex roots (a+bi) and (a-bi)
the general solution is

$$
y=e^{a x}\left(c_{1} \sin b x+c_{2} \cos b x\right)
$$

Where $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots$.. are constants

Solve

$$
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+25 y=0
$$

Answer:

The auxiliary eqaution is $\mathrm{m}^{2}-6 \mathrm{~m}+25=0$
The roots of this equation is

$$
m=3+4 i \text { and } 3-4 i
$$

The general solution is

$$
y=e^{3 x}\left(c_{1} \sin 4 x+c_{2} \cos 4 x\right)
$$

