
JAVA THREADS

SHAILESH S

ASST. PROFESSOR

DEPT. OF COMPUTER SCIENCE

SH COLLEGE

WHAT IS A THREAD?

 Individual and separate unit of execution that is part of a

process

multiple threads can work together to accomplish a common

goal

 Video Game example

one thread for graphics

one thread for user interaction

one thread for networking

WHAT IS A THREAD?

video

interaction

networking

Video Game

Process

ADVANTAGES

 easier to program

1 thread per task

 can provide better performance

thread only runs when needed

no polling to decide what to do

 multiple threads can share resources

 utilize multiple processors if available

DISADVANTAGE

 multiple threads can lead to deadlock

much more on this later

 overhead of switching between threads

CREATING THREADS (METHOD 1)

 extending the Thread class

must implement the run() method

thread ends when run() method finishes

call .start() to get the thread ready to run

CREATING THREADS EXAMPLE 1

class Output extends Thread {

private String toSay;

public Output(String st) {

toSay = st;

}

public void run() {

try {

for(;;) {

System.out.println(toSay);

sleep(1000);

}

} catch(InterruptedException e) {

System.out.println(e);

}

}

}

EXAMPLE 1 (CONTINUED)

class Program {

public static void main(String [] args) {

Output thr1 = new Output(“Hello”);

Output thr2 = new Output(“There”);

thr1.start();

thr2.start();

}

}

main thread is just another thread (happens to start first)

main thread can end before the others do

any thread can spawn more threads

CREATING THREADS (METHOD 2)

 implementing Runnable interface

virtually identical to extending Thread class

must still define the run()method

setting up the threads is slightly different

CREATING THREADS EXAMPLE 2

class Output implements Runnable {

private String toSay;

public Output(String st) {

toSay = st;

}

public void run() {

try {

for(;;) {

System.out.println(toSay);

Thread.sleep(1000);

}

} catch(InterruptedException e) {

System.out.println(e);

}

}

}

EXAMPLE 2 (CONTINUED)

class Program {

public static void main(String [] args) {

Output out1 = new Output(“Hello”);

Output out2 = new Output(“There”);

Thread thr1 = new Thread(out1);

Thread thr2 = new Thread(out2);

thr1.start();

thr2.start();

}

}

main is a bit more complex

everything else identical for the most part

ADVANTAGE OF USING RUNNABLE

 remember - can only extend one class

 implementing runnable allows class to extend something

else

CONTROLLING JAVA THREADS

_.start(): begins a thread running

wait() and notify(): for synchronization

• more on this later

_.stop(): kills a specific thread (deprecated)

_.suspend() and resume(): deprecated

_.join(): wait for specific thread to finish

_.setPriority(): 0 to 10 (MIN_PRIORITY to

MAX_PRIORITY); 5 is default (NORM_PRIORITY)

JAVA THREAD SCHEDULING

 highest priority thread runs

if more than one, arbitrary

 yield(): current thread gives up processor so another of equal

priority can run

if none of equal priority, it runs again

 sleep(msec): stop executing for set time

lower priority thread can run

STATES OF JAVA THREADS

 4 separate states

new: just created but not started

runnable: created, started, and able to run

blocked: created and started but unable to run because it is

waiting for some event to occur

dead: thread has finished or been stopped

STATES OF JAVA THREADS

new

runnable

blocked

dead

start()
stop(),

end of run method

wait(),

I/O request,

suspend()

notify(),

I/O completion,

resume()

JAVA THREAD EXAMPLE 1

class Job implements Runnable {

private static Thread [] jobs = new Thread[4];

private int threadID;

public Job(int ID) {

threadID = ID;

}

public void run() { do something }

public static void main(String [] args) {

for(int i=0; i<jobs.length; i++) {

jobs[i] = new Thread(new Job(i));

jobs[i].start();

}

try {

for(int i=0; i<jobs.length; i++) {

jobs[i].join();

}

} catch(InterruptedException e) { System.out.println(e); }

}

}

JAVA THREAD EXAMPLE 2
class Schedule implements Runnable {

private static Thread [] jobs = new Thread[4];

private int threadID;

public Schedule(int ID) {

threadID = ID;

}

public void run() { do something }

public static void main(String [] args) {

int nextThread = 0;

setPriority(Thread.MAX_PRIORITY);

for(int i=0; i<jobs.length; i++) {

jobs[i] = new Thread(new Job(i));

jobs[i].setPriority(Thread.MIN_PRIORITY);

jobs[i].start();

}

try {

for(;;) {

jobs[nextThread].setPriority(Thread.NORM_PRIORITY);

Thread.sleep(1000);

jobs[nextThread].setPriority(Thread.MIN_PRIORITY);

nextThread = (nextThread + 1) % jobs.length;

}

} catch(InterruptedException e) { System.out.println(e); }

}

}

