SEPARATION AXIOM

DISCLAIMER

Note that in this context the word axiom is not used in the meaning of "principle" of a theory, which has necessarily to be assumed, but in the meaning of "requirement" contained in a definition, which can be fulfilled or not, depending on the cases.

Notation

Circle – open sets

Rectangle with sharp edges – topological space

Rectangle with blunt edges – closed sets

T0-separation axiom Kolmogorov space

For any two points x, y in X, there is an open set U such that x in U and y not in U or y in U and x not in U.

Example of To-space

- Every discrete topological space is To space, for if x and y are two distinct points of X, then {x} contains x and does not contain y.
- A non-discrete space containing more than one point is not To – space.
- An indiscrete space is not To
- A cofinite topological space such that X is an infinite set for if x and y are two distinct points of X, then{x} being finite, X-{x} is open set containing x but not y.

T1-separation axiom Frechet spaces

For any two points x, y in X there exists two open sets U and V such that x in U and y not in U, and y in V and x not in V.

Example of T1-space

 Every discrete topological space with two or more points is T1 – space, for if x and y are two distinct points of X, then {x} contains x and does not contain y and {y} contains y that does not contain x.

Every T1 space is T0

Let τ ={(a,∞), a in R}U{R,φ}, then (X, τ) is T0 space but not T1.

For let $x,y \in R$ with x < y, then (x, ∞) contains y but there is no open set containing x but not y.

But R under usual topology is T1

T2-separation axiom Huasdorff space

For any two points x,y in X there exists two open sets U and V such that x in U, y in V, and intersection of U and V is empty.

Example of T2 - space

 Every discrete topological space with two or more points is T2 – space, for if x and y are two distinct points of X, then {x} contains x and does not contain y and {y} contains y that does not contain x such that {x}∩{y}=φ

Every T2 space is T1

 Consider a cofinite topological space such that X is an infinite set

for if x and y are two distinct points of X, then{x} being finite, X-{x} is open set containing x but not y and X-{y} is an open set containing y but not x.

Therefore the space is T1 Conversly assume it is T2

• Then there exist open sets G and H such that x is in G and y is in H such that $G \cap H = \varphi$ Then $(G \cap H)^c = \varphi^c$

 $G^c U H^c = X$

Since G and H are open its complements are finite and therefore it is a contradiction.

Hence the space is not T2

Regular

If, given any point x and closed set F in X such that x does not belong to F, there exist disjoint open sets U and V, such that U contains x and V contains F.

T3-separation axiom Vietoris space

1.X is T3 if it fulfils T1 and is regular.

Let $X = \{a,b,c\}$

 $\tau = \{X, \varphi, \{b\}, \{a,c\}\}\$

Then (X, τ) is regular but not T1(since there exist c and a), so it is not T3.

2. The usual topological space under R is T3

Every T3 space is T2

Normal

if any two disjoint closed subsets of *X* are separated by disjoint open sets.

Completely regular

If, given any point x and closed set F in X such that x does not belong to F, they are separated by a continuous function.

f(x) = 0 and f(y) = 1 for all y in C

Tychnoff space

If a space is completely regular and T1

T4-separation axiom Tietze space

X fulfils T1 and is normal

Fig. 4

• Reference Text:

Topology by K.D.Joshi