MSc S1-16P1CHET04 -QUANTUM CHEMISTRY AND GROUP THEORY

Dr ABI T G, Asst. Professor, Chemistry, Sacred Heart College Thevara

Topic – Symmetry Elements and Symmetry Operations Date = 13-7-2018

Part I

GROUP THEORY AND **120**° **90**⁰ **CHEMISTRY** .C CI N Pt Cl CI Η Н Н C_4 **C**₃

GROUP THEORY AND CHEMISTRY

• Group Theory is a purely mathematical concept

- Most of the fundamentals of group theory were developed by the French mathematician Evariste Galois (1811 – 1832) in the early 19th century
- The principles of Group theory are used by Chemists and Physicists for the analysis of symmetry properties, structure, bonding and molecular spectra of compounds

Symmetry Elements and Symmetry Operations

- A symmetry element is a geometric entity such as a line, a plane or a point about which one can perform an operation of rotation, reflection or inversion
- A symmetry operation is a movement of a molecule/object such that the resulting configuration is indistinguishable from the original.
 - During any symmetry operation at least one point in the molecule should remain unchanged. This point is the center of gravity of the molecule
 - During translation (bodily movement from one point to another) the center of gravity of the molecule is changed
 - Therefore, a molecule should never be translated during a symmetry operation
- A symmetry operation will transform a molecule into an equivalent or identical configuration

Illustration

Suppose, H₂O molecule is rotated about an axis passing through the oxygen atom and bisecting the H-O-H bond angle, through 180⁰

The configurations I, II and III are indistinguishable. Therefore this operation is a symmetry operation

The symmetry element is the imaginary line (axis) and

the symmetry operation is the rotation of the molecule about this axis through 180°

There are only 5 basic operations in nature which will leave the center of gravity of a molecule unchanged

SYMMETRY ELEMENT	SYMMETRY OPERATION
1. Identity E	Doing nothing
2. Proper rotation axis C _n	Rotation about the axis through some angle
3. Mirror plane or Plane of symmetry σ	Reflection about the plane
4. Inversion center or Center of symmetry i	Inversion. Inversion is reflection about a point
5. Improper rotation axis S _n	Rotation about an axis through some angle followed by a reflection in a plane perpendicular to the rotation axis

IDENTITY E

- This operation does nothing. It is the simplest of all the symmetry operations
- This is the only element/operation possessed by all molecules
- Both the symmetry element and the symmetry operation are denoted by the same symbol, E
- If this operation is carried out n times it is denoted as Eⁿ where n is 1,2,3,4, And Eⁿ = E whether n is odd or even.
- $E^2 = EE = E$
- The identity element E can generate only one operation

Proper rotation axis C_n

- If the rotation of a molecule about an axis through some angle results in a configuration which is indistinguishable from the original, then the molecule is said to possess a proper rotation axis. It is denoted by the symbol C_n.
- C stands for cyclic
- $n = \frac{360^{\circ}}{\theta}$ where θ is the angle through which the molecule is rotated
- C_n is called a n- fold rotation axis and n is the order of the axis

H₂O molecule has to be rotated through 180⁰ about the axis passing through the O atom and bisecting the H-O-H bond angle to get an indistinguishable orientation. So the symmetry axis is a 360⁰/180⁰ = 2 fold rotation axis and is denoted as C₂

Θ in degree ⁰	$\mathbf{n} = \frac{360^{\circ}}{\theta}$	Symbol of the proper rotation axis
180	2	C ₂
120	3	C ₃
90	4	C ₄
72	5	C ₅
60	6	C ₆

Identifying the proper rotation axis in some common molecules

Water H₂O Angular Shape

There is only one C₂ axis

The C₂ axis is in the plane of the molecule

Boron tri fluoride BF₃ (Shape : Planar triangular – The B and the

three F atoms are in the same plane – the molecular plane)

The C₃ axis passes through the B atom and perpendicular to the plane of the molecule Each C₂ axis passes through the B atom and one of the F atoms. The three C₂ axes are in the molecular plane One C₃ axis and Three C₂ axes

The higher order C₃ axis is called the principal axis

The unique principal axis is always taken as the z-axis

In BF_3 molecule, the C₃ axis is the z-axis and the molecular plane which is perpendicular to the principal axis (Z) is the *xy* plane

In fact, in all planar molecules, with a unique principal axis, the principal axis is the z-axis and the molecular plane is <u>xy</u> plane

Ammonia NH₃

The NH_3 molecule has pyramidal shape with the N atom at the apex

120⁰ N C_3

There is only one C_3 axis.

The C₃ axis passes through the N atom and the center of the triangular base formed by the 3 H atoms

PtCl₄ ion The shape of this ion is square planar

The four C₂ axes

One C₄ axis

Four C₂ axes separated into 2 sets

Two $C_2^{'}$ axes Two $C_2^{''}$ axes

The C₄ axis passes through the Pt atom and perpendicular to the plane of the ion The four C₂ axes are in the plane of the molecule

The C₂' axis passes through the Pt atom and two diagonal Cl atoms

The C₂" axis passes through the Pt atom and bisects the Cl-Pt-Cl bond angle

Cyclo penta dienyl anion C₅H₅⁻

Shape of the ion: Pentagonal Planar

One C₅ axis perpendicular To the molecular plane

Five C₂ axes, all in the molecular plane

Shape : Hexagonal planar

One C₆ axis

Six C₂ axes

Three C_2 axis of one type C_2'

Three C₂ axis of another type C₂"

Visualize these proper rotation axes of Benzene molecule

Symmetry operations associated with various Symmetry elements

- An important note:
- In the application of group theory to molecular symmetry, the elements of the 'group' are the symmetry operations and not the symmetry elements.
- So it is very important to be familiar with the symmetry operations associated with each symmetry element
- We have already seen that identity E can generate only one operation

Symmetry operations associated with Proper rotation axis C_n

Consider the following symmetry operations

We find that C_3 and C_3^2 are unique operations but $C_3^3 = E$

Therefore, the 3 operations generated by C₃ axis are C₃, C₃² and E

- In general, a C_n axis can generate n operations namely
 C_n, C_n², C_n³ ... C_nⁿ
- Also $C_n^n = E$ whether n is odd or even.

 $C_n^{n+1} = C_n$

 $C_n^{n+2} = C_n^2$ and so on

Operations generated by some common C_n axes

2 Operations

$$C_2$$
 and $C_2^2 = E$

$$C_3^{2}$$
, C_3^{2} and $C_3^{3} = E$

C₄

4 Operations C_4 , C_4^2 , C_4^3 and $C_4^4 = E$

 C_4^2 stands for rotation through 90^o twice (90x2) which is same as rotation through 180^o once. That is C_2

 $C_4^2 = C_2$

Therefore, the four operations of a C₄ axis are

$$C_4$$
, C_2 , C_4^3 and $C_4^4 = E$

VERIFY THIS DIAGRAMMATICALLY.

HINT: In the diagram, number the four Cl atoms, carry out C_4^2 and C_2 operations separately and compare the two resulting configurations

The four operations of a C₄ axis are

$$C_4$$
, C_2 , C_4^3 and $C_4^4 = E$

Of these 4 operations, C_2 and E are operations of a C_2 axis

That means the C_4 axis is also a C_2 axis

In other words, the C_4 axis is coincident with a C_2 axis

C₆ axis

VERIFY THIS DIAGRAMMATICALLY.

6 Operations $C_6^{2}, C_6^{2}, C_6^{3}, C_6^{4}, C_6^{5}$ and $C_6^{6} = E$

Some of these operations may be written in other simpler forms

 C_6^2 stands for rotation through 60^o twice (60x2) which is same as rotation through 120^o once. That is C_3

 $C_6^2 = C_3$

 C_6^3 stands for rotation through 60° three times (60x3) which is same as rotation through 180° once. That is C_2

 $C_6^3 = C_2$

 C_6^4 stands for rotation through 60° four times (60x4) which is same as rotation through 240° once or rotation through 120° twice (120x2) That is C_3^2

 $C_6^4 = C_3^2$

Therefore, the six operations of a C_6 axis are

 C_6 , C_3 , C_2 , C_3^2 , C_6^5 and $C_6^6 = E$

The six operations of a C_6 axis are

$$C_6$$
, C_3 , C_2 , C_3^2 , C_6^5 and $C_6^6 = E$

Of these 6 operations, C_3 , C_3^2 and E are operations of a C_3 axis

That means the C_6 axis is also a C_3 axis

In other words, the C₆ axis is coincident with a C₃ axis

In general, if an even order C_n axis exists, then a $C_{n/2}$ axis should exist independently

Note that the C_6 axis is also coincident with a C_2 axis